Have a personal or library account? Click to login
Development of a standard phantom for diffusion-weighted magnetic resonance imaging quality control studies: A review Cover

Development of a standard phantom for diffusion-weighted magnetic resonance imaging quality control studies: A review

Open Access
|Nov 2022

References

  1. 1. Drake-Pérez M, Boto J, Fitsiori A, Lovblad K, Vargas MI. Clinical applications of diffusion weighted imaging in neuroradiology. Insights into Imaging. 2018;9(4):535-47. https://doi.org/10.1007/s13244-018-0624-310.1007/s13244-018-0624-3610897929846907
  2. 2. Laubach HJ, Jakob PM, Loevblad KO, et al. A phantom for diffusion-weighted imaging of acute stroke. Journal of Magnetic Resonance Imaging. 1998;8(6):1349-1354. https://doi.org/10.1002/jmri.188008062710.1002/jmri.18800806279848751
  3. 3. Bammer R. Basic principles of diffusion-weighted imaging. European Journal of Radiology. 2003;45(3):169-84. https://doi.org/10.1016/S0720-048X(02)00303-010.1016/S0720-048X(02)00303-0
  4. 4. Tang L, Zhou XJ. Diffusion MRI of cancer: From low to high b-values. Journal of Magnetic Resonance Imaging. 2019;49(1):23-40. https://doi.org/10.1002/jmri.2629310.1002/jmri.26293629884330311988
  5. 5. Rosenkrantz AB, Padhani AR, Chenevert TL, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. Journal of Magnetic Resonance Imaging. 2015;42(5):1190-202. https://doi.org/10.1002/jmri.2498510.1002/jmri.2498526119267
  6. 6. Granata V, Fusco R, Setola SV, et al. Diffusion kurtosis imaging and conventional diffusion weighted imaging to assess electrochemotherapy response in locally advanced pancreatic cancer. Radiology and Oncology. 2019;53(1):15-24. https://doi.org/10.2478/raon-2019-000410.2478/raon-2019-0004641102730681974
  7. 7. Bennett KM, Schmainda KM, Bennett R, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magnetic Resonance in Medicine. 2003;50(4):727-34. https://doi.org/10.1002/mrm.1058110.1002/mrm.1058114523958
  8. 8. Posnansky OP, Shah NJ. On the problem of diffusivity in heterogeneous biological materials with random structure. Journal of Biological Physics. 2008;34(6):551-567. https://doi.org/10.1007/s10867-008-9119-710.1007/s10867-008-9119-7260326419669513
  9. 9. Cooper RL, Chang DB, Young AC, Martin CJ, Ancker-Johnson B. Restricted diffusion in biophysical systems: experiment. Biophysical Journal. 1974;14(3):161-177. https://doi.org/10.1016/S0006-3495(74)85904-710.1016/S0006-3495(74)85904-713344924823458
  10. 10. Malyarenko DI, Pang Y, Amouzandeh G, Chenevert TL. Numerical DWI phantoms to optimize accuracy and precision of quantitative parametric maps for non-Gaussian diffusion. Proc. SPIE 11313, Medical Imaging 2020: Image Processing, 113130W. 2020. https://doi.org/10.1117/12.254941210.1117/12.2549412
  11. 11. Kato H, Kuroda M, Yoshimura K, et al. Composition of MRI phantom equivalent to human tissues. Medical Physics. 2005;32(10):3199-3208. https://doi.org/10.1118/1.204780710.1118/1.204780716279073
  12. 12. de Souza EM, Costa ET, Castellano G. Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives. Research on Biomedical Engineering. 2017;33(2):156-165. https://doi.org/10.1590/2446-4740.0781610.1590/2446-4740.07816
  13. 13. Kıvrak AS, Paksoy Y, Erol C, et al. Comparison of apparent diffusion coefficient values among different MRI platforms: a multicenter phantom study. Diagn Interv Radiol. 2013;19(6):433-437. https://doi.org/10.5152/dir.2013.1303410.5152/dir.2013.1303424004973
  14. 14. Hubbard PL, Zhou FL, Eichhorn SJ, Parker GJ. Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magnetic Resonance in Medicine. 2015;73(1):299-305. https://doi.org/10.1002/mrm.2510710.1002/mrm.2510724469863
  15. 15. Kalaitzakis G, Boursianis T, Gourzoulidis G, et al. Apparent diffusion coefficient measurements on a novel diffusion weighted MRI phantom utilizing EPI and HASTE sequences. Physica Medica. 2020;73:179-189. https://doi.org/10.1016/j.ejmp.2020.04.02410.1016/j.ejmp.2020.04.02432371141
  16. 16. Groch MW, Urbon JA, Erwin WD, Al-Doohan S. An MRI tissue equivalent lesion phantom using a novel polysaccharide material. Magnetic Resonance Imaging. 1991;9(3):417-421. https://doi.org/10.1016/0730-725X(91)90430-T10.1016/0730-725X(91)90430-T1881261
  17. 17. Mazzara GP, Briggs RW, Wu Z, Steinbach BG. Use of a modified polysaccharide gel in developing a realistic breast phantom for MRI. Magnetic Resonance Imaging. 1996;14(6):639-648. https://doi.org/10.1016/0730-725X(96)00054-910.1016/0730-725X(96)00054-98897368
  18. 18. Vassiliou VS, Heng EL, Gatehouse PD, et al. Magnetic resonance imaging phantoms for quality-control of myocardial T1 and ECV mapping: specific formulation, long-term stability and variation with heart rate and temperature. Journal of Cardiovascular Magnetic Resonance. 2016;18(1):1-12. https://doi.org/10.1186/s12968-016-0275-910.1186/s12968-016-0275-9503446327659737
  19. 19. Lavdas I, Behan KC, Papadaki A, McRobbie DW, Aboagye EO. A phantom for diffusion-weighted MRI (DW-MRI). Journal of Magnetic Resonance Imaging, 2013;38(1):173-179. https://doi.org/10.1002/jmri.2395010.1002/jmri.2395023576443
  20. 20. Captur G, Gatehouse P, Keenan KE, et al. A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance— the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program. Journal of Cardiovascular Magnetic Resonance. 2016;18(1):1-20. https://doi.org/10.1186/s12968-016-0280-z10.1186/s12968-016-0280-z503441127660042
  21. 21. Kim JH, Kim JH, Lee SH., Park J, Lee SK. Fabrication of a spherical inclusion phantom for validation of magnetic resonance-based magnetic susceptibility imaging. PLOS One. 2019;14(8):e0220639. https://doi.org/10.1371/journal.pone.022063910.1371/journal.pone.0220639668193831381587
  22. 22. Hara M, Kuroda M, Ohmura Y, et al. A new phantom and empirical formula for apparent diffusion coefficient measurement by a 3 Tesla magnetic resonance imaging scanner. Oncology Letters. 2014;8(2):819-824. https://doi.org/10.3892/ol.2014.218710.3892/ol.2014.2187408137325013504
  23. 23. Gatidis S, Schmidt H, Martirosian P, Schwenzer NF. Development of an MRI phantom for diffusion-weighted imaging with independent adjustment of apparent diffusion coefficient values and T2 relaxation times. Magnetic Resonance in Medicine. 2014;72(2):459-463. https://doi.org/10.1002/mrm.2494410.1002/mrm.2494424123316
  24. 24. Le Bihan D, Iima M. Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLOS Biology. 2015;13(7):e1002203. https://doi.org/10.1371/journal.pbio.100224610.1371/journal.pbio.1002246455945026334873
  25. 25. Khasawneh A, Kuroda M, Yoshimura Y, et al. Development of a novel phantom using polyethylene glycol for the visualization of restricted diffusion in diffusion kurtosis imaging and apparent diffusion coefficient subtraction method. Biomedical Reports. 2020;13:52. https://doi.org/10.3892/br.2020.135910.3892/br.2020.1359755751633082949
  26. 26. Hariri A, Palma-Chavez J, Wear KA, Pfefer TJ, Jokerst JV, Vogt WC. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems. Photoacoustics. 2021;22:100245. https://doi.org/10.1016/j.pacs.2021.10024510.1016/j.pacs.2021.100245797296633747787
  27. 27. Stringer R. Electrophoresis overview. Encyclopedia of Analytical Science (Second Edition), Elsevier 2005, Pages 356-363, https://doi.org/10.1016/B0-12-369397-7/00120-510.1016/B0-12-369397-7/00120-5
  28. 28. Fieremans E, Lee HH. Physical and numerical phantoms for the validation of brain microstructural MRI: A cookbook. Neuroimage. 2018;182:39-61. https://doi.org/10.1016/j.neuroimage.2018.06.04610.1016/j.neuroimage.2018.06.046617567429920376
  29. 29. Yoshida T, Urikura A, Shirata K, Nakaya Y, Terashima S, Hosokawa Y. Image quality assessment of single-shot turbo spin echo diffusion-weighted imaging with parallel imaging technique: a phantom study. The British Journal of Radiology. 2016;89(1065):20160512. https://doi.org/10.1259/bjr.2016051210.1259/bjr.20160512512493527452269
  30. 30. Komlosh ME, Benjamini D, Barnett AS, et al. Anisotropic phantom to calibrate high-q diffusion MRI methods. Journal of Magnetic Resonance. 2017;275:19-28. https://doi.org/10.1016/j.jmr.2016.11.01710.1016/j.jmr.2016.11.017532568027951427
  31. 31. Kamphuis ME, Greuter MJ, Slart RH, Slump CH. Quantitative imaging: systematic review of perfusion/flow phantoms. European Radiology Experimental. 2020;4(1):1-13. https://doi.org/10.1186/s41747-019-0133-210.1186/s41747-019-0133-2705449332128653
  32. 32. Al-Mulla M, McGee A, Kenny P, Rainford L. Quality Assurance Phantom Testing of an Echo-Planar Diffusion-Weighted Sequence on a 3T Scanner. Adv Res Foot Ankle: ARFA-110. 2019;11.
  33. 33. Shurche S, Riahialam N. Diffusion Phantom Assessment in 3 Tesla MRI Scanner. Frontiers in Biomedical Technologies. 2016;3(1-2):34-40.
  34. 34. Hellerbach A, Schuster V, Jansen A, Sommer J. MRI phantoms–are there alternatives to agar? PloS One. 2013;8(8):e70343. https://doi.org/10.1371/journal.pone.007034310.1371/journal.pone.0070343373401223940563
  35. 35. Sato E, Fukuzawa K, Takashima H, et al. Evaluation of a Polyethylene Glycol Phantom for Measuring Apparent Diffusion Coefficients Using Three 3.0 T MRI Systems. Applied Magnetic Resonance. 2021;52(5):619-31. https://doi.org/10.1007/s00723-021-01336-z10.1007/s00723-021-01336-z
  36. 36. Matsuya R, Kuroda M, Matsumoto Y, et al. A new phantom using polyethylene glycol as an apparent diffusion coefficient standard for MR imaging. International Journal of Oncology. 2009;35(4):893-900. https://doi.org/10.3892/ijo_0000040410.3892/ijo_0000040419724927
  37. 37. Boursianis T, Kalaitzakis G, Pappas E, Karantanas AH, Maris TG. MRI diffusion phantoms: ADC and relaxometric measurement comparisons between polyacrylamide and agarose gels. European Journal of Radiology. 2021;139:109696. https://doi.org/10.1016/j.ejrad.2021.10969610.1016/j.ejrad.2021.10969633865063
  38. 38. Wagner F, Laun FB, Kuder TA, et al. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms. PloS One. 2017;12(6):e0179276. https://doi.org/10.1371/journal.pone.017927610.1371/journal.pone.0179276547626128628638
  39. 39. Pierpaoli C, Sarlls J, Nevo U, Basser PJ, Horkay F. Polyvinylpyrrolidone (PVP) water solutions as isotropic phantoms for diffusion MRI studies. Proc Intl Soc Magn Reson Med. 2009;17:1414.
DOI: https://doi.org/10.2478/pjmpe-2022-0020 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 169 - 179
Submitted on: Apr 16, 2022
Accepted on: Oct 3, 2022
Published on: Nov 17, 2022
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Eric Naab Manson, Abdul Nashirudeen Mumuni, Issahaku Shirazu, Francis Hasford, Stephen Inkoom, Edem Sosu, Mark Pokoo Aikins, Gedel Ahmed Mohammed, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.