Have a personal or library account? Click to login
Physical aspects of Bragg curve of therapeutic oxygen-ion beam: Monte Carlo simulation Cover

Physical aspects of Bragg curve of therapeutic oxygen-ion beam: Monte Carlo simulation

Open Access
|Sep 2022

References

  1. 1. Raj V, Rai A, Sharma S, et al. Role of synchrotron radiation in cancer: A review on techniques and applications. J Anal Pharm Res. 2018;7(2):175-180. https://doi.org/10.15406/japlr.2018.07.00221
  2. 2. Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-199. https://doi.org/10.7150/ijms.3635329800922408567
  3. 3. Scaife JE, Barnett GC, Noble DJ, et al. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. The British Journal of Radiology. 2015;88:1051. https://doi.org/10.1259/bjr.20150172462854026084351
  4. 4. Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys. 2010;82:383-425. https://doi.org/10.1103/RevModPhys.82.383
  5. 5. Ugo A, Gerhard K. Radiotherapy with beams of carbon ions. Rep Prog Phys. 2005;68(8):1861-1882. https://doi.org/10.1088/0034-4885/68/8/R04
  6. 6. Kantemiris I, Karaiskos P, Papagiannis P, et al. Dose and dose averaged LET comparison of 1H, 4He, 6Li, 8Be, 10B, 12C, 14N, and 16O ion beams forming a spread-out Bragg peak. Med Phys. 2011;38(12):6585-6591. https://doi.org/10.1118/1.366291122149840
  7. 7. Hamdi DH, Barbieri S, Chevalier F, et al. In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact. BMC Cancer. 2015;15:579. https://doi.org/10.1186/s12885-015-1590-5452972726253487
  8. 8. Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 2017;14(8):483-495. https://doi.org/10.1038/nrclinonc.2017.3028290489
  9. 9. Hamdi DH, Chevalier F, Groetz JG, et al. Comparable Senescence Induction in Three-dimensional Human Cartilage Model by Exposure to Therapeutic Doses of X-rays or C-ions. Int J Radiat Oncol Biol Phys. 2016;95(1):139-146, https://doi.org/10.1016/j.ijrobp.2016.02.01427084635
  10. 10. Particle Therapy Facilities in Clinical Operation. Accessed: January 2022. [Online]. Avalable: https://www.ptcog.ch/index.php/facilities-in-operation
  11. 11. Lysakovski P, Ferrari A, Tessonnier T, et al. Development and Benchmarking of a Monte Carlo Dose Engine for Proton Radiation Therapy. Front Phys. 2021;9:741453. https://doi.org/10.3389/fphy.2021.741453
  12. 12. Sokol O, Scifoni E, Tinganelli W, et al. Oxygen beams for therapy: advanced biological treatment planning and experimental verification. Phys Med Biol. 2019;62(19):7798-7813. https://doi.org/10.1088/1361-6560/aa88a0
  13. 13. Kurz K, Mairani A, Parodi P. First experimental based characterization of oxygen ion beam depth dose distributions at the Heidelberg ion beam therapy center. Phys Med Biol. 2012;57(15):5017-5034. https://doi.org/10.1088/0031-9155/57/15/5017
  14. 14. Sato T, Kase Y, Watanabe R, et al. Biological Dose Estimation for Charged-Particle Therapy Using an Improved PHITS Code Coupled with a Microdosimetric Kinetic Model. Radiation Research. 2009;171(1):107-117. https://doi.org/10.1667/RR1510.1
  15. 15. Iwamoto Y, Sato T, Hashimoto S, et al. Benchmark study of the recent version of the PHITS code. Journal of Nuclear Science and Technology. 2017;54(5):617-635. https://doi.org/10.1080/00223131.2017.1297742
  16. 16. Iida K, Kohama A, Oyamatsu K. Formula for Proton-Nucleus Reaction Cross Section at Intermediate Energies and Its Application. J Phys Soc Jpn. 2007;76(4):04420. https://doi.org/10.1143/JPSJ.76.044201
  17. 17. Ogawa T, Sato T, Hashimoto S, et al. Energy-dependent fragmentation cross sections of relativistic C12. Phys Rev C. 2015;92:024614. https://doi.org/10.1103/PhysRevC.92.029904
  18. 18. Furihata M, Statistical analysis of light fragment production from medium energy proton-induced reactions. Nucl Instrum Methods Phys Res B. 2000;171:251-258. https://doi.org/10.1016/S0168-583X(00)00332-3
  19. 19. Puchalska M, Tessonnier T, Parodi K, et al. Benchmarking of PHITS for Carbon Ion Therapy. Int J Part Ther. 2018;4(3):48-55. https://doi.org/10.14338/IJPT-17-00029.1687156431773011
  20. 20. Parisi A, Nascimento LF, Van Hoey O, et al. Low temperature thermoluminescence anomaly of LiF:Mg,Cu,P radiation detectors exposed to 1H and 4He ion. Radiation Measurements. 2018;119:155-165. https://doi.org/10.1016/j.radmeas.2018.10.008
  21. 21. Soltani-Nabipour J, Sardari D, Cata-Danil G. Sensitivity of the bragg peak curve to the average ionization potential of the stopping medium. Rom Jurn of Phys. 2009;54(3-4):321-330.
  22. 22. Resch, AF, Fuchs, H, Georg D. Benchmarking GATE/Geant4 for 16O ion beam therapy. Phys Med Biol. 2017;62(18):N474-N484. https://doi.org/10.1088/1361-6560/aa807e28718770
  23. 23. MacCabee HD, Ritter MA. Fragmentation of High-Energy Oxygen-Ion Beams in Water. Radiation Research. 1974;60(3):409-421. https://doi.org/10.2307/3574021
  24. 24. Zeitlin C, Miller J, Guetersloh S, et al. Fragmentation of 14N, 16O, 20Ne, and 24Mg nuclei at 290 to 1000 MeV/nucleon. Physical Review C. 2011;83(3):034909. https://doi.org/10.1103/PhysRevC.83.034909
  25. 25. Rucinski A, Traini, G, Roldan, AB, et al. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 16O ion beams in a PMMA target at large angles. Physica Medica. 2019;64:45-53. https://doi.org/10.1016/j.ejmp.2019.06.00131515035
  26. 26. Boukhellout A, Ounoughi N, Kharfi F. Monte-Carlo simulation using PHITS of secondary neutrons produced in-patient during 16O ion therapy. Radiat Prot Dosimetry. 2022;198(1-2):31-36. https://doi.org/10.1093/rpd/ncab18835037066
  27. 27. Ogawa T, Sato S, Hashimoto S, et al. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model. Nucl Instrum Methods Phys Res A. 2013;723:36-46. https://doi.org/10.1016/j.nima.2013.04.078
  28. 28. Grogg K, Alpert NM, Zhu X, et al. Mapping 15O production rate for proton therapy verification. Int J Radiat Oncol Biol Phys. 2015;92(2):453-459. https://doi.org/10.1016/j.ijrobp.2015.01.023443189425817530
  29. 29. Ying C K, Bolst D, Rosenfeld A, et al. Characterization of the mixed radiation field produced by carbon and oxygen ion beams of therapeutic energy: A Monte Carlo simulation study. J Med Phys. 2019;44:263-269. https://www.jmp.org.in/text.asp?2019/44/4/263/27267110.4103/jmp.JMP_40_19693620231908385
  30. 30. Grzanka L, Ardenfors O, Bassler N. Monte Carlo simulations of spatial let distributions in clinical proton beams. Radiation Protection Dosimetry. 2018;180(1-4):296-299 https://doi.org/10.1093/rpd/ncx27229378068
  31. 31. Tinganelli W, Durante M, Hirayama R, et al. Kill-painting of hypoxic tumours in charged particle therapy. Sci Rep. 2015;5:17016. https://doi.org/10.1038/srep17016465706026596243
  32. 32. ICRU, 1989. Tissue substitutes in radiation dosimetry and measurement. Report 44, International Commission on Radiation Units and Measurements, Bethesda, MD, USA.
  33. 33. Tommasino F, Scifoni E, Durante M. New ions for therapy. International Journal of Particle Therapy. 2016;2(3):428-438. https://doi.org/10.14338/IJPT-15-00027.1687419931772953
DOI: https://doi.org/10.2478/pjmpe-2022-0019 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 160 - 168
Submitted on: Mar 28, 2022
Accepted on: Sep 10, 2022
Published on: Sep 30, 2022
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Nabil Ounoughi, Yamina Dribi, Abdelmalek Boukhellout, Faycal Kharfi, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.