Have a personal or library account? Click to login
Application of therapeutic linear accelerators for the production of radioisotopes used in nuclear medicine Cover

Application of therapeutic linear accelerators for the production of radioisotopes used in nuclear medicine

Open Access
|Jul 2022

References

  1. 1. Preliminary Report on Supply of Radioisotopes for Medical use and Current Developments in Nuclear Medicine. European Commission; 2009.
  2. 2. The Applications of Research Reactors, IAEA-TECDOC-1234. International Atomic Energy Agency; 2001.
  3. 3. Ross C, Galea R, Saull P, et al. Using the 100Mo photoneutron reaction to meet Canada’s requirement for 99mTc. Phys Can. 2010;66(1):19-24. https://nrc-publications.canada.ca/eng/view/ft/?id=e3d07404-c73f-4b7a-8f49-029b1c2c15a3
  4. 4. Nagai Y. Production scheme for diagnostic-therapeutic radioisotopes by accelerator neutrons. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97(6):292-323. https://doi.org/10.2183/pjab.97.017
  5. 5. Gagnon K, Bénard F, Kovacs M, et al. Cyclotron production of 99mTc: Experimental measurement of the 100Mo(p,x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nuclear Medicine and Biology. 2011;38(6):907-916. https://doi.org/10.1016/j.nucmedbio.2011.02.010
  6. 6. Schaffer P, Bénard F, Bernstein A, et al. Direct production of 99mTc via 100Mo(p,2n) on small medical cyclotrons. Physics Procedia. 2015;66:383-395. https://doi.org/10.1016/j.phpro.2015.05.048
  7. 7. Gagnon K, Wilson JS, Holt CMB, et al. Cyclotron production of 99mTc: recycling of enriched 100Mo metal targets. Appl Radiat Isot. 2012;70(8):1685-1690. https://doi.org/10.1016/j.apradiso.2012.04.016
  8. 8. Waltar A. Radiation and Modern Life: Fulfilling Marie Curie’s Dream. Prometheus Books; 2005.
  9. 9. Lambrecht RM, Sekine T, Vera Ruiz H. Alice predictions on the accelerator production of molybdenum-99. Appl Radiat Isot. 1999;51:177-182. https://doi.org/10.1016/S0969-8043(98)00171-7
  10. 10. Ruth T. Accelerating production of medical isotopes. Nature 2009;4 57: 536-537. https://doi.org/10.1038/457536a
  11. 11. Gellie RW, Lokan KH. The photodisintegration of molybdenum. Nucl Phys. 1964;60(2):343-348. https://doi.org/10.1016/0029-5582(64)90668-6
  12. 12. Beaver IE, Hupf HB. Production of 99mTc on a Medical Cyclotron: A Feasibility Study. J Nucl Med. 1971;12:739-41. https://doi.org/10.2967/jnumed.113.13341324722529
  13. 13. Artun O, Aytekin H. Investigation of excitation functions of proton-induced reactions on 94, 96, 98, 100Mo targets for production of radioisotopes 94m, 94g, 96m, 96g, 96, 99mTc. Turkish Journal of Physics. 2017;41:295-302. https://doi.org/10.3906/fiz-1612-2
  14. 14. Radioisotopes and Radiopharmaceuticals Reports No. 2, Cyclotron Produced Radionuclides. International Atomic Energy Agency; 2017.
  15. 15. Gopalakrishna A, Suryanarayana SV, Naik H, et al. Production of 99Mo and 64Cu in a mixed field of photons and neutrons in a clinical electron linear accelerator. Journal of Radioanalytical and Nuclear Chemistry. 2018;317:1409-1417. https://doi.org/10.1007/s10967-018-6016-9
  16. 16. Starovoitova VN, Tchelidze L, Wells DP. Production of medical radioisotopes with linear accelerators. Appl Radiat Isot. 2014;85:39-44. https://doi.org/10.1016/j.apradiso.2013.11.122
  17. 17. Mevex Linear Accelerators (Linacs). https://mevex.com/mevex-ebeam-xray-linacs/
  18. 18. Galea R, Ross C, Wells RG. Reduce, reuse and recycle: A green solution to Canada’s medical isotope shortage. Appl Radiat Isot. 2014;87:148-51. https://doi.org/10.1016/j.apradiso.2013.11.100
  19. 19. Fong A, Meyer TI, Zala K. Making Medical Isotopes, Report of the Task Force on Alternatives for Medical isotope Production. Vancouver, Canada: TRIUMF; 2008. https://www.triumf.ca/sites/default/files/Making-Medical-Isotopes-PREPUB.pdf
  20. 20. Lagunas-Solar MC, Kiefer PM, Carvacho OF, et al. Cyclotron production of NCA Tc-99m and Mo-99 -an alternative non-reactor supply source of instant Tc-99m and Mo-99/Tc-99m generators. Appl Radiat Isot. 1991;42:643-57.10.1016/0883-2889(91)90035-Y
  21. 21. Bzymek E, Konefał A, Orlef A, et al. Test of production of 99Mo/99mTc by means of typical medical linear accelerators used in teleradiotherapy. Acta Phys Pol B. 2016;47(3):777-782. https://doi.org/10.5506/APhysPolB.47.777
  22. 22. Bzymek E, Konefał A, Orlef A, et al. Test of production of 198Au radioisotope by means of typical medical linear accelerators used in teleradiotherapy. Acta Phys Pol B. 2017;48(3):671-674. https://doi.org/10.5506/APhysPolB.48.671
  23. 23. Młyńczyk N, Konefał A, Orlef A, et al. Innovatory production of radioisotopes 117mSn, 186Re and 188Re for laboratory tests and the future application in nuclear medicine. Acta Phys Pol B. 2020;51(3):867-872. https://doi.org/10.5506/APhysPolB.51.867
  24. 24. Konefał A, Polaczek-Grelik K, Zipper W. Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs. Radiat Prot Dosim. 2008;128(2):133-145. https://doi.org/10.1093/rpd/ncm31817569692
  25. 25. Konefał A, Orlef A, Łaciak M, et al. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers. Rep Pract Oncol Radiother. 2012;17(6):339-346. https://doi.org/10.1016/j.rpor.2012.06.004392034924669311
  26. 26. Polaczek-Grelik K, Karaczyn B, Konefał A. Nuclear reactions in linear medical accelerators and their exposure consequences. Appl Radiat Isot. 2012;70(10):2332-2339. https://doi.org/10.1016/j.apradiso.2012.06.02122871435
  27. 27. Janiszewska M, Polaczek-Grelik K, Raczkowski M, et al. Secondary radiation dose during high-energy total body irradiation. Strahlenther Onkol. 2014;190(5):459-466. https://doi.org/10.1007/s00066-014-0635-z24599345
  28. 28. Konefał A, Orlef A, Bieniasiewicz M. Measurements of neutron radiation and induced radioactivity for the new medical linear accelerator, the Varian TrueBeam. Radiat Meas. 2016;86:8-15. http://dx.doi.org/10.1016/j.radmeas.2015.12.03910.1016/j.radmeas.2015.12.039
  29. 29. Bieniasiewicz M, Konefał A, Wendykier J, et al. Measurements of thermal and resonance neutron fluence and induced radioactivity inside bunkers of medical linear accelerators in the center of oncology in Opole, Poland. Acta Phys Pol B. 2016;47(3):771-776. https://doi.org/10.5506/APhysPolB.47.771
  30. 30. Konefał A, Bieniasiewicz M, Wendykier J, et al. Additional radiation sources in a treatment and control room of medical linear accelerators. Radiation Physics and Chemistry. 2021;185:109513. https://doi.org/10.1016/j.radphyschem.2021.109513
  31. 31. Sohrabi M, Hakimi A. Novel air-to-tissue conversion factors for fast, epithermal and thermal photoneutrons in a Siemens ONCOR dual energy 18 MV X-ray medical linear accelerator. Radiat Meas. 2019;126:106138. https://doi.org/10.1016/j.radmeas.2019.106138
  32. 32. Nooshin Banaee, Kiarash Goodarzi, Hassan Ali Nedaie, Neutron contamination in radiotherapy processes: a review study. J Rad Res. 2021;62(6):947-954; https://doi.org/10.1093/jrr/rrab07634467374
  33. 33. Konefał A, Dybek M, Zipper W, et al. Thermal and epithermal neutrons in the vicinity of the Primus Siemens biomedical accelerator. Nukleonika 2005;50(2):73-81.
  34. 34. Konefał A, Orlef A, Dybek M, et al. Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac. Phys Med. 2008;24(4):212-218. https://doi.org/10.1016/j.ejmp.2008.01.01418339569
  35. 35. Vysakh R, Musthafa MM, Midhun CV, et al. Experimental determination of thermal neutron fluence around Elekta Versa HD linear accelerator for various photon energies. Biomed Phys Eng Express. 2020;6(5):055018. https://doi.org/10.1088/2057-1976/abac9033444249
  36. 36. Esposito A, Bedogni R, Lembo L, et al. Determination of the neutron spectra around an 18 MV medical LINAC with a passive Bonner sphere spectrometer based on gold foils and TLD pairs. Radiat Meas. 2008;43(2-6):1038-1043. https://doi.org/10.1016/j.radmeas.2007.10.035
  37. 37. Vega-Carrillo HR, Baltazar-Raigosa A. Photoneutron spectra around an 18 MV linac. J Radioanal Nucl Chem. 2011;287(1): 323-327. https://doi.org/10.1007/s.10967-010-0696-0
  38. 38. Amgarou K, Lacoste V, Martin A. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Nucl Instr Meth Phys Res A. 2011;629(1):329-336. https://doi.org/10.1016/j.nima.2010.11.101
  39. 39. Konefał A, Bakoniak M. Orlef A, et al. Energy spectra in water for the 6 MV X-ray therapeutic beam generated by Clinac-2300 linac. Radiat Meas. 2015;72:12-22. https://doi.org/10.1016/j.radmeas.2014.11.008
  40. 40. Dietrich SS, Bermab BL. Atlas of photoneutron cross sections obtained with monoenergetic photons. Atomic Data and Nuclear Data Tables. 1998;38(2):199-338. https://doi.org/10.1016/0092-640X(88)90033-2
  41. 41. Beckurc K, Wirtc K. Neutron physics. Atomizdat; 1968.
  42. 42. Ditrói F, Tárkányi F, Takács S. et al. Activation cross sections of proton induced nuclear reactions on gold up to 65 MeV. Appl Radiat Isot. 2016;113:96-109. https://doi.org/10.1016/j.apradiso.2016.04.02027156194
  43. 43. Jovancevic N, Daraban L, Stroh H, et al. The neutron cross-section functions for the reactions 187Re(n,α)184Ta, 187Re(n,2n)186Re and 185Re(n,2n)184Re in the energy range 13.08-19.5 MeV. Eur Phys J A. 2016;52:148. https://doi.org/10.1140/epja/i2016-16148-4
  44. 44. Manual for reactor produced radioisotopes. IAEA-TECDOC-1340. International Atomic Energy Agency; 2003.
  45. 45. Carlson BV, Guimaraes FB, Caldeira AD. Production Cross Sections of Some Radionuclides with Therapeutic Applications. AIP Conf Proc. 2005;769(1):1676. https://doi.org/10.1063/1.1945331
  46. 46. Ćwikła JB, Żbikowski P, Kwiatkowska B, et al. Radiosynovectomy in rheumatic diseases. J Ultrason. 2014;14:241–251. https://doi.org/10.15557/JoU.2014.0024457967926673861
  47. 47. Młyńczyk N, Konefał A. 117mSn - the promising radioisotope for use in nuclear medicine. Acta Phys Pol B Proc Suppl. 2020;13(4):943-948. https://doi.org/10.5506/APhysPolBSupp.13.943
  48. 48. Ponsard B, Srivastava SC, Mausner LF, et al. Production of Sn-117m in the BR2 high-flux reactor. Appl Radiat Isot. 2009;67(7-8):1158-1161. https://doi.org/10.1016/j.apradiso.2009.02.02319303313
  49. 49. Shearer DR, Pezzullo JC, Moore MM. et al. Radiation dose from radiopharmaceuticals contaminated with molybdenum-99. J Nucl Med. 1988; 29(5): 695-700.
  50. 50. Dantas BM, Dantas ALA, Marques FLN, et al. Determination of 99Mo contamination in a nuclear medicine patient submitted to a diagnostic procedure with 99mTc. Braz Arch Biol Tech. 2005; 48: 215-220. https://doi.org/10.1590/S1516-89132005000700032
  51. 51. Argyrou M, Valassi A, Andreou M, et al. Dosimetry and Therapeutic Ratios for Rhenium-186 HEDP. ISRN Molecular Imaging. 2013;124603. https://doi.org/10.1155/2013/124603
  52. 52. Boschi A, Uccelli L, Pasquali M, et al. 188W/188Re Generator System and Its Therapeutic Applications. Journal of Chemistry. 2014;529406. https://doi.org/10.1155/2014/529406
DOI: https://doi.org/10.2478/pjmpe-2022-0013 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 107 - 116
Submitted on: Apr 11, 2022
Accepted on: Jul 12, 2022
Published on: Jul 28, 2022
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Adam Konefał, Andrzej Orlef, Maria Sokół, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.