Have a personal or library account? Click to login
Effects of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-rich Fraction on ROS Generation in Proton Beam irradiated Human Colon Carcinoma Cells Cover

Effects of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-rich Fraction on ROS Generation in Proton Beam irradiated Human Colon Carcinoma Cells

Open Access
|Mar 2022

References

  1. 1. Matsumoto Y, Ando K, Kato TA, et al. Difference in Degree of Sub-Lethal Damage Recovery Between Clinical Proton Beams and X-Rays. Radiat Prot Dosimetry. 2019;183(1-2):93-97. https://doi.org/10.1093/rpd/ncy27010.1093/rpd/ncy27030576477
  2. 2. Chew MT, Jones B, Hill M, Bradley DA. Radiation, a two-edged sword: From untoward effects to fractionated radiotherapy. Radiat Phys Chem. 2021;178(108994). https://doi.org/10.1016/j.radphyschem.2020.10899410.1016/j.radphyschem.2020.108994
  3. 3. Zhang M, Qin N, Jia X, Zou WJ, Khan A, Yue NJ. Investigation on using high-energy proton beam for total body irradiation (TBI). J Appl Clin Med Phys. 2016;17(5):90-98. https://doi.org/10.1120/jacmp.v17i5.622310.1120/jacmp.v17i5.6223587411427685117
  4. 4. Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano. 2019;4:100027. https://doi.org/10.1016/j.onano.2018.10002710.1016/j.onano.2018.100027
  5. 5. Alan Mitteer R, Wang Y, Shah J, et al. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep. 2015;5(13961):1-12. https://doi.org/10.1038/srep1396110.1038/srep13961456480126354413
  6. 6. Moulder JE. Chemical radiosensitizers: the Journal history. Int J Radiat Biol. 2019:95(7):940-944. https://doi.org/10.1080/09553002.2019.156977910.1080/09553002.2019.156977930657352
  7. 7. Boateng F, Ngwa W. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int J Mol Sci. 2020;21(273):1-22. https://doi.org/10.3390/ijms2101027310.3390/ijms21010273698155431906108
  8. 8. Jiang L, Iwahashi H. The roles of radio-functional natural chemicals for the development of cancer radiation therapy. Rev Environ Health. 2019;34(1):5-12. https://doi.org/10.1515/reveh-2018-005710.1515/reveh-2018-005730511940
  9. 9. Kozak J, Jonak K, Maciejewski R. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed Pharmacother. 2020;125(110037):1-11. https://doi.org/10.1016/j.biopha.2020.11003710.1016/j.biopha.2020.11003732187964
  10. 10. Chemocare.com. Chemotherapy. Chemocare.com. Published 2016. Accessed December 23, 2016. http://chemocare.com/chemotherapy/drug-info/
  11. 11. Aghili M, Andalib B, Moghaddam ZK, Safaie M, Hashemi FA, Darzikolaie NM. Concurrent Chemo- Radiobrachytherapy with Cisplatin and Medium Dose Rate Intra- Cavitary Brachytherapy for Locally Advanced Uterine Cervical Cancer. Asian Pacific J Cancer Prev. 2018;19:2745-2750. https://doi.org/10.22034/APJCP.2018.19.10.2745
  12. 12. Rashid RA, Razak KA, Geso M, Abdullah R, Dollah N, Rahman WN. Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams. Bionanoscience. 2018;8(3):713-722. https://doi.org/10.1007/s12668-018-0524-510.1007/s12668-018-0524-5
  13. 13. Muhammad MA, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman WN. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem. 2018;150:40-45. https://doi.org/10.1016/j.radphyschem.2018.04.01810.1016/j.radphyschem.2018.04.018
  14. 14. Khairil Anuar MA, Sisin NNT, Akasaka H, et al. Effect of Nanoparticle Size on Radiosensitization Effect and ROS Generation in Human Colon Carcinoma Cells (HCT 116) After 150 MeV Proton Beam Irradiation. J Nucl Relat Technol. 2021;18(1):17-25.
  15. 15. Sisin NNT, Abidin SZ, Yunus MA, Zin HM, Razak KA, Rahman WN. Evaluation of Bismuth Oxide Nanoparticles as Radiosensitizer for Megavoltage Radiotherapy. Int J Adv Sci Eng Inf Technol. 2019;9(4):1434-1443. https://doi.org/10.18517/ijaseit.9.4.721810.18517/ijaseit.9.4.7218
  16. 16. Abidin SZ, Zulkifli ZA, Razak KA, Zin H, Yunus MA, Rahman WN. PEG coated bismuth oxide nanorods induced radiosensitization on MCF-7 breast cancer cells under irradiation of megavoltage radiotherapy beams. Mater Today Proc. 2019;16:1640-1645. https://doi.org/10.1016/j.matpr.2019.06.02910.1016/j.matpr.2019.06.029
  17. 17. Vinardell MP, Mitjans M. Metal/Metal Oxide Nanoparticles for Cancer Therapy. In: Goncalves G, Tobias G, eds. Nanomedicine and Nanotoxicology. Springer International Publishing; 2018:341-364. https://doi.org/10.1007/978-3-319-89878-0_1010.1007/978-3-319-89878-0_10
  18. 18. Hadi F, Tavakkol S, Laurent S, et al. Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. J Cell Physiol. 2019;234(11): 20028-20035. https://doi.org/10.1002/jcp.2859910.1002/jcp.2859930982979
  19. 19. Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep. 2019;9(1):1-13. https://doi.org/10.1038/s41598-019-55605-w10.1038/s41598-019-55605-w691577931844085
  20. 20. Wang H, Jiang H, Corbet C, et al. Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. Cancer Lett. 2019;450:42-52. https://doi.org/10.1016/j.canlet.2019.02.03410.1016/j.canlet.2019.02.03430790679
  21. 21. Rahman WN, Mat NFC, Long NAC, Rashid RA, Dollah N, Abdullah R. Radiosensitizing effects of Oroxylum indicum extract in combination with megavoltage radiotherapy beams. In: Materials Today: Proceedings. Vol 16. Elsevier Ltd.; 2019:2072-2077. https://doi.org/10.1016/j.matpr.2019.06.09410.1016/j.matpr.2019.06.094
  22. 22. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95-105. https://doi.org/10.1016/j.canlet.2016.03.04210.1016/j.canlet.2016.03.04227037062
  23. 23. Wang H, Zhang X. ROS reduction does not decrease the anticancer efficacy of X-Ray in two breast cancer cell lines. Oxid Med Cell Longev. 2019;2019(3782074):1-12. https://doi.org/10.1155/2019/378207410.1155/2019/3782074643774231001373
  24. 24. Chen Y, Li N, Wang J, et al. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics. 2019;9(1):167-178. https://doi.org/10.7150/thno.2803310.7150/thno.28033633280230662560
  25. 25. Sisin NNT, Mat NFC, Abdullah R, Rahman WN. Baicalein-rich Fraction as a Potential Radiosensitizer or Radioprotective for HDR Brachytherapy: A Preliminary Study. J Nucl Relat Technol. 2020;18(1):9-16.
  26. 26. Sisin NNT, Azam NA, Rashid RA, et al. Dose enhancement by bismuth oxide nanoparticles for HDR brachytherapy. J Phys Conf Ser. 2020;1497(012002):1-5. https://doi.org/10.1088/1742-6596/1497/1/01200210.1088/1742-6596/1497/1/012002
  27. 27. Sisin NNT, Razak KA, Abidin SZ, et al. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int J Nanomedicine. 2020;2020(15):7805-7823.10.2147/IJN.S269214756756533116502
  28. 28. Zulkifli ZA, Razak KA, Rahman WNWA, Abidin SZ. Synthesis and Characterisation of Bismuth Oxide Nanoparticles using Hydrothermal Method: The Effect of Reactant Concentrations and application in radiotherapy. In: Journal of Physics: Conference Series. Vol 1082. IOP Publishing; 2018:1-7. https://doi.org/10.1088/1742-6596/1082/1/01210310.1088/1742-6596/1082/1/012103
  29. 29. Zulkifli ZA, Razak KA, Rahman WNWA. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method. In: 3rd International Concerence on the Science and Engineering of Materials (ICoSEM 2017) AIP Conference Proceedings 1958. Vol 020007. American Institute of Physics; 2018:1-5. https://doi.org/10.1063/1.503453810.1063/1.5034538
  30. 30. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy. Int J Nanomedicine. 2019;14:9941-9954. https://doi.org/10.2147/IJN.S22891910.2147/IJN.S228919692722931908451
  31. 31. Wahab NH, Din NAM, Lim YY, Jamil NIN, Mat NFC. Proapoptotic activities of Oroxylum indicum leave extract in HeLa cells. Asian Pac J Trop Biomed. 2019;9(8):339-345. https://doi.org/10.4103/2221-1691.26208010.4103/2221-1691.262080
  32. 32. Sisin NNT. Synergetic Radiosensitization Effects Of Bismuth Oxide Nanoparticles, Cisplatin And Baicalein-Rich Fraction From Oroxylum Indicum Combinations For Clinical Radiotherapy. Universiti Sains Malaysia, PhD thesis. Published online 2021.
  33. 33. Akagi T, Higashi A, Tsugami H, Sakamoto H, Masuda Y, Hishikawa Y. Ridge filter design for proton therapy at Hyogo Ion Beam Medical Center. Phys Med Biol. 2003;48:N301-312. https://doi.org/10.1088/0031-9155/48/22/n0110.1088/0031-9155/48/22/N01
  34. 34. Sisin NNT, Rashid RA, Abdullah R, et al. GafchromicTM EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192 Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation. 2022;2:130-148. https://doi.org/10.3390/radiation201001010.3390/radiation2010010
  35. 35. Khan FM. Measurement of Ionizing Radiation. In: Khan’s The Physics of Radiation Therapy. 5th ed.; 2014:76.
  36. 36. Hubbell JH, Seltzer SM. X-Ray Mass Attenuation Coefficients, NIST Standard Reference Database 126. https://doi.org/10.18434/T4D01F
  37. 37. Narita N, Ito Y, Takabayashi T, et al. Suppression of SESN1 reduces cisplatin and hyperthermia resistance through increasing reactive oxygen species (ROS) in human maxillary cancer cells. Int J Hyperth. 2018;35(1):269-278. https://doi.org/10.1080/02656736.2018.149628210.1080/02656736.2018.149628230300027
  38. 38. Wang R, Li H, Sun H. Bismuth: Environmental Pollution and Health Effects. Encycl Environ Heal. 2020;1:415-423. https://doi.org/10.1016%2FB978-0-12-409548-9.11870-6
  39. 39. Shakibaie M, Forootanfar H, Ameri A, Adeli-Sardou M, Jafari M, Rahimi HR. Cytotoxicity of biologically synthesised bismuth nanoparticles against HT-29 cell line. IET Nanobiotechnology. 2018;12(5):653-657. https://doi.org/10.1049/iet-nbt.2017.029510.1049/iet-nbt.2017.0295867664230095428
  40. 40. Dinda B, Silsarma I, Dinda M, Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol. 2015;161:255-278. https://doi.org/10.1016/j.jep.2014.12.02710.1016/j.jep.2014.12.02725543018
  41. 41. Patwardhan R. Amelioration of Ionizing Radiation Induced Cell Death in Lymphocytes by Baicalein. Homi Bhabha National Institute, PhD thesis. Published online 2015.
  42. 42. Figueroa D, Asaduzzaman M, Young F. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′–dichlorofluorescin diacetate (DCFDA) assay. J Pharmacol Toxicol Methods. 2018;94:26-33. https://doi.org/10.1016/j.vascn.2018.03.00710.1016/j.vascn.2018.03.00729630935
  43. 43. Seo SJ, Jeon JK, Han SM, Kim JK. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value. Int J Radiat Biol. 2017;11:1239-1247. https://doi.org/10.1080/09553002.2017.136155610.1080/09553002.2017.136155628752783
  44. 44. Altundal Y, Cifter G, Detappe A, et al. New potential for enhancing concomitant chemoradiotherapy with FDA approved concentrations of cisplatin via the photoelectric effect. Phys Medica. 2015;31(1):25-30. https://doi.org/10.1016/j.ejmp.2014.11.00410.1016/j.ejmp.2014.11.004449243725492359
DOI: https://doi.org/10.2478/pjmpe-2022-0004 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 30 - 36
Submitted on: Dec 12, 2021
Accepted on: Mar 6, 2022
Published on: Mar 29, 2022
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Noor Nabilah Talik Sisin, Hiroaki Akasaka, Ryohei Sasaki, Takahiro Tominaga, Hayato Miura, Masashi Nishi, Moshi Geso, Nor Fazila Che Mat, Khairunisak Abdul Razak, Wan Nordiana Rahman, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.