Have a personal or library account? Click to login
Monte Carlo Calculation of linear attenuation coefficients and photon scattering properties of novel concretes loaded with Osmium, Iridium and Barite nanoparticles Cover

Monte Carlo Calculation of linear attenuation coefficients and photon scattering properties of novel concretes loaded with Osmium, Iridium and Barite nanoparticles

Open Access
|Dec 2021

References

  1. 1. Tekin H, Sayyed M, Issa SA. Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiation Physics and Chemistry. 2018;150:95-100. https://doi.org/10.1016/j.radphyschem.2018.05.00210.1016/j.radphyschem.2018.05.002
  2. 2. Janković K, Stanković S, Bojović D, Stojanović M, Antić L. The influence of nano-silica and barite aggregate on properties of ultra high performance concrete. Construction and Building Materials. 2016;126:147-156. https://doi.org/10.1016/j.conbuildmat.2016.09.02610.1016/j.conbuildmat.2016.09.026
  3. 3. Mesbahi A, Mansouri E, Jangjoo AG, Tekin HO. Radiation protection characteristics of nano-concretes against photon and neutron beams. Smart Nanoconcretes and Cement-Based Materials: Elsevier; 2020:447-460. https://doi.org/10.1016/B978-0-12-817854-6.00019-210.1016/B978-0-12-817854-6.00019-2
  4. 4. Malekzadeh R, Mehnati P, Sooteh MY, Mesbahi A. Influence of the size of nano-and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology. Radiological Physics and Technology. 2019;12(3):325-334. https://doi.org/10.1007/s12194-019-00529-310.1007/s12194-019-00529-331385155
  5. 5. Zabihzadeh M, Ay MR, Allahverdi M, Mesbahi A, Mahdavi SR, Shahriari M. Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model. Radiation Protection Dosimetry. 2009;135(1):21-32. https://doi.org/10.1093/rpd/ncp09710.1093/rpd/ncp09719483207
  6. 6. Juste B, Morató S, García C, Miró R, Verdú G. Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2020;954:161248. https://doi.org/10.1016/j.nima.2018.09.08310.1016/j.nima.2018.09.083
  7. 7. Khaldari R, Mesbahi A, Kara U. Monte Carlo calculation of shielding properties of newly developed heavy concretes for megavoltage photon beam spectra used in radiation therapy. Iranian Journal of Medical Physics. 2016;13(4):250-260. https://dx.doi.org/10.22038/ijmp.2017.19206.1175
  8. 8. Ahmad I, Shahzada K, Ahmad MI, et al. Densification of Concrete using Barite as Fine Aggregate and its Effect on Concrete Mechanical and Radiation Shielding Properties. Journal of Engineering Research. 2019;7(4):81-95.
  9. 9. Mortazavi S, Mosleh-Shirazi M, Roshan-Shomal P, Raadpey N, Baradaran-Ghahfarokhi M. High-performance heavy concrete as a multi-purpose shield. Radiation Protection Dosimetry. 2010;142(2-4):120-124. https://doi.org/10.1093/rpd/ncq26510.1093/rpd/ncq26521036811
  10. 10. Tekin H, Sayyed M, Altunsoy E, Manici T. Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code. Dig. J. Nanomater. Biostruct. 2017;12(3):861-867.
  11. 11. Agar O, Tekin HO, Sayyed M, Korkmaz ME, Culfa O, Ertugay C. Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Results in Physics. 2019;12:237-243. https://doi.org/10.1016/j.rinp.2018.11.05310.1016/j.rinp.2018.11.053
  12. 12. Rajavikraman R. Novel method for radiation shielding using nano-concrete composite. Int J Mater Sci Eng. 2013;1:20-23. https://doi.org/10.12720/ijmse.1.1.20-2310.12720/ijmse.1.1.20-23
  13. 13. Krishna BG, Prasad P, Sahu V, Sahu JP, Agarwal A. Beta Backscattering and Gamma Radiation Absorption Characteristics of Carbon Nanoparticles Contained Concrete Composite. Paper presented at: Nano Hybrids and Composites 2017. https://doi.org/10.4028/www.scientific.net/NHC.17.3110.4028/www.scientific.net/NHC.17.31
  14. 14. Tekin HO, Singh VP, Manici T. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes. 2017;121:122-125. https://doi.org/10.1016/j.apradiso.2016.12.04010.1016/j.apradiso.2016.12.040
  15. 15. Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding. Radiation Physics and Chemistry. 2018;147:85-90. https://doi.org/10.1016/j.radphyschem.2018.02.01710.1016/j.radphyschem.2018.02.017
  16. 16. Facure A, Silva A, Rivera J, Falcao R. Neutron scattering in concrete and wood: Part II-oblique incidence. Radiation Protection Dosimetry. 2008;128(3):367-374. https://doi.org/10.1093/rpd/ncm37810.1093/rpd/ncm378
  17. 17. Abdo AE-S. Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Annals of Nuclear Energy. 2002;29(16):1977-1988. https://doi.org/10.1016/S0306-4549(02)00019-110.1016/S0306-4549(02)00019-1
  18. 18. Mesbahi A, Azarpeyvand A-A, Shirazi A. Photoneutron production and backscattering in high density concretes used for radiation therapy shielding. Annals of Nuclear Energy. 2011;38(12):2752-2756. https://doi.org/10.1016/j.anucene.2011.08.02310.1016/j.anucene.2011.08.023
  19. 19. Mesbahi A, Azarpeyvand A-A, Khosravi HR. Does concrete composition affect photoneutron production inside radiation therapy bunkers? Japanese Journal of Radiology. 2012;30(2):162-166. https://doi.org/10.1007/s11604-011-0030-y10.1007/s11604-011-0030-y22180187
  20. 20. Choi CH, Park S-Y, Park JM, Chun M, Kim J-i. Monte Carlo simulation of neutron dose equivalent by photoneutron production inside the primary barriers of a radiotherapy vault. Physica Medica. 2018;48:1-5. https://doi.org/10.1016/j.ejmp.2018.03.00910.1016/j.ejmp.2018.03.00929728220
  21. 21. Mesbahi A, Alizadeh G, Seyed-Oskoee G, Azarpeyvand A-A. A new barite-colemanite concrete with lower neutron production in radiation therapy bunkers. Annals of Nuclear Energy. 2013;51:107-111. https://doi.org/10.1016/j.anucene.2012.07.03910.1016/j.anucene.2012.07.039
  22. 22. Mesbahi A, Khaldari R. Neutron and photon scattering properties of high density concretes used in radiation therapy facilities: A Monte Carlo study. Polish Journal of Medical Physics and Engineering. 2017;23(3):61. https://doi.org/10.1515/pjmpe-2017-001110.1515/pjmpe-2017-0011
  23. 23. Pelowitz DB. MCNPX USER’S MANUAL Version 2.7. 0-LA-CP-11-00438. Los Alamos National Laboratory. 2011.
  24. 24. Sheikh-Bagheri D, Rogers D. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Medical Physics. 2002;29(3):391-402. https://doi.org/10.1118/1.144541310.1118/1.144541311930914
  25. 25. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Shielding characteristics of nanocomposites for protection against X-and gamma rays in medical applications: effect of particle size, photon energy and nanoparticle concentration. Radiation and Environmental Biophysics. 2020:1-18. https://doi.org/10.1007/s00411-020-00865-810.1007/s00411-020-00865-832780196
  26. 26. Waly E-SA, Bourham MA. Comparative study of different concrete composition as gamma-ray shielding materials. Annals of Nuclear Energy. 2015;85:306-310. https://doi.org/10.1016/j.anucene.2015.05.01110.1016/j.anucene.2015.05.011
  27. 27. Ghasemi-Jangjoo A, Ghiasi H. MC safe bunker designing for an 18 MV linac with nanoparticles included primary barriers and effect of the nanoparticles on the shielding aspects. Reports of Practical Oncology & Radiotherapy. 2019;24(4):363-368. https://doi.org/10.1016/j.rpor.2019.05.00910.1016/j.rpor.2019.05.009655448731194189
  28. 28. Un A, Demir F. Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavyweight and normal-weight concretes. Applied Radiation and Isotopes. 2013;80:73-77. https://doi.org/10.1016/j.apradiso.2013.06.01510.1016/j.apradiso.2013.06.01523838359
  29. 29. Norhasri MM, Hamidah M, Fadzil AM. Applications of using nano material in concrete: A review. Construction and Building Materials. 2017;133:91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.00510.1016/j.conbuildmat.2016.12.005
  30. 30. Swanson WP. Radiological safety aspects of the operation of electron linear accelerators. 1979.
  31. 31. Raso DJ. Monte Carlo calculations on the reflection and transmission of scattered gamma rays. Nuclear Science and Engineering. 1963;17(3):411-418. https://doi.org/10.13182/NSE63-A1739010.13182/NSE63-A17390
DOI: https://doi.org/10.2478/pjmpe-2021-0034 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 291 - 298
Published on: Dec 23, 2021
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Samira Keramat Jou, Asghar Mesbahi, Reza Eghdam Zamiri, Farshad Seyednejad, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.