Have a personal or library account? Click to login
Dose calculation accuracy for photon small fields in treatment planning systems with comparison by Monte Carlo simulations Cover

Dose calculation accuracy for photon small fields in treatment planning systems with comparison by Monte Carlo simulations

Open Access
|Sep 2021

References

  1. 1. Behinaein S, Osei E, Darko J, et al. Evaluating small field dosimetry with the Acuros XB (AXB) and analytical anisotropic algorithm (AAA) dose calculation algorithms in the eclipse treatment planning system. J Radiother Pract. 2019:1-12. https://doi.org/10.1017/S146039691900010410.1017/S1460396919000104
  2. 2. Mesbahi A, Zergoug I. Dose calculations for lung inhomogeneity in high-energy photon beams and small beamlets: a comparison between XiO and TiGRT treatment planning systems and MCNPX Monte Carlo code. Iran J Med Phys. 2015;12(3):167-77. https://doi.org/10.22038/IJMP.2015.6218
  3. 3. Alfonso R, Andreo P, Capote R, et al. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008;35(11):5179-86. https://doi.org/10.1118/1.300548110.1118/1.300548119070252
  4. 4. Park JC, Li JG, Arhjoul L, et al. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT. Med Phys. 2015;42(4):1836-1850. doi:10.1118/1.491485810.1118/1.491485825832074
  5. 5. Khan FM, Gibbons JP. Khan's the physics of radiation therapy: Lippincott Williams & Wilkins; 2014.
  6. 6. Ojala JJ, Kapanen MK, Hyödynmaa SJ, et al. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2):4-18. https://doi.org/10.1120/jacmp.v15i2.466210.1120/jacmp.v15i2.4662587546324710454
  7. 7. Lechner W, Wesolowska P, Azangwe G, et al. A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. PhiRO. 2018;5:58-63. https://doi.org/10.1016/j.phro.2018.02.00510.1016/j.phro.2018.02.005780758633458370
  8. 8. Azangwe G, Grochowska P, Georg D, et al. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys. 2014;41(7):072103. https://doi.org/10.1118/1.488379510.1118/1.488379524989398
  9. 9. Das IJ, Ding GX, Ahnesjö A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206-15. https://doi.org/10.1118/1.281535610.1118/1.281535618293576
  10. 10. Westermark M, Arndt J, Nilsson B, et al. Comparative dosimetry in narrow high-energy photon beams. Phys Med Biol. 2000;45(3):685. https://doi.org/10.1088/0031-9155/45/3/30810.1088/0031-9155/45/3/30810730964
  11. 11. Scott AJ, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35(10):4671-84. https://doi.org/10.1118/1.297522310.1118/1.297522318975713
  12. 12. Gholami S, Longo F, Nedaie HA, et al. Application of Geant4 Monte Carlo simulation in dose calculations for small radiosurgical fields. Med Dosim. 2018;43(3):214-223. https://doi.org/10.1016/j.meddos.2017.08.00710.1016/j.meddos.2017.08.00728988675
  13. 13. Partanen M, Ojala J, Niemelä J, et al. Comparison of two Monte Carlo-based codes for small-field dose calculations in external beam radiotherapy. Acta Oncol. 2017;56(6):891-3. https://doi.org/10.1080/0284186X.2017.129204810.1080/0284186X.2017.129204828464738
  14. 14. Cranmer-Sargison G. Small field dosimetry: experimental methods and monte carlo simulation in small field radiation therapy dosimetry [Ph.D. thesis]. University of Leeds (United Kingdom); 2014.
  15. 15. Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator. Med Phys. 2007;34(5):1665-77. https://doi.org/10.1118/1.272731410.1118/1.272731417555248
  16. 16. Mostaar A, Allahverdi M, Shahriari M. Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom. Int J Radiat Res. 2003;1(3):143-149.
  17. 17. Mesbahi A, Fix M, Allahverdi M, et al. Monte Carlo calculation of Varian 2300C/D Linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements. Appl Radiat Isotopes. 2005;62(3):469-77. https://doi.org/10.1016/j.apradiso.2004.07.00810.1016/j.apradiso.2004.07.00815607926
  18. 18. Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water–lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2007;8(1):33-46. https://doi.org/10.1120/jacmp.v8i1.232410.1120/jacmp.v8i1.2324572240017592451
  19. 19. Elcim Y, Dirican B, Yavas O. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys. 2018;19(5):616-24. https://doi.org/10.1002/acm2.1242610.1002/acm2.12426612310630079474
  20. 20. Hoskin P. External Beam Therapy: Oxford University Press; 2019.10.1093/med/9780198786757.001.0001
  21. 21. Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol. 2003;48(21):R107. https://doi.org/10.1088/0031-9155/48/21/R0110.1088/0031-9155/48/21/R01
  22. 22. Mesbahi A, Reilly AJ, Thwaites DI. Development and commissioning of a Monte Carlo photon beam model for Varian Clinac 2100EX linear accelerator. Appl Radiat Isotopes. 2006;64(6):656-62. https://doi.org/10.1016/j.apradiso.2005.12.01210.1016/j.apradiso.2005.12.01216455264
  23. 23. Jan S, Benoit D, Becheva E, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56(4):881. https://doi.org/10.1088/0031-9155/56/4/00110.1088/0031-9155/56/4/00121248393
  24. 24. Sarrut D, Bardiès M, Boussion N, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41(6Part1). https://doi.org/10.1118/1.487161710.1118/1.487161724877844
  25. 25. Palta JR, Liu C, Li JG. Quality assurance of intensity-modulated radiation therapy. Int J Radiat Oncol. Biol. Phys.. 2008;71(1):S108-S12. https://doi.org/10.1016/j.ijrobp.2007.05.09210.1016/j.ijrobp.2007.05.09218406906
  26. 26. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-101. https://doi.org/10.1118/1.343808110.1118/1.343808120879569
  27. 27. Fogliata A, Lobefalo F, Reggiori G, et al. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms. Med Phys. 2016;43(10):5685-94. https://doi.org/10.1118/1.496321910.1118/1.496321927782735
  28. 28. Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case. Phys Medica. 2017;44:157-62. https://doi.org/10.1016/j.ejmp.2016.11.10410.1016/j.ejmp.2016.11.10427890568
  29. 29. Cranmer-Sargison G, Beckham W, Popescu I. Modelling an extreme water–lung interface using a single pencil beam algorithm and the Monte Carlo method. Phys Med Biol. 2004;49(8):1557. https://doi.org/10.1088/0031-9155/49/8/01310.1088/0031-9155/49/8/01315152692
  30. 30. Krieger T, Sauer OA. Monte Carlo-versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol. 2005;50(5):859. https://doi.org/10.1088/0031-9155/50/5/01010.1088/0031-9155/50/5/01015798260
  31. 31. Fogliata A, Nicolini G, Clivio A, et al. Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc® stereotactic treatments. Med Phys. 2011;38(11):6228-37. https://doi.org/10.1118/1.365473910.1118/1.365473922047388
  32. 32. Huang B, Wu L, Lin P, et al. Dose calculation of Acuros XB and Anisotropic Analytical Algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size. Radiat Oncol. 2015;10(1):53. https://doi.org/10.1186/s13014-015-0357-010.1186/s13014-015-0357-0435366425886628
  33. 33. Fogliata A, Nicolini G, Clivio A, et al. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6(1):82. https://doi.org/10.1186/1748-717X-6-8210.1186/1748-717X-6-82316841121771317
  34. 34. Pelowitz DB. MCNPX user’s manual version 2.5. 0. Los Alamos National Laboratory. 2005;76:473.
  35. 35. Mesbahi A. Dosimetric characteristics of unflattened 6 MV photon beams of a clinical linear accelerator: a Monte Carlo study. Appl Radiat Isotopes. 2007;65(9):1029-36. https://doi.org/10.1016/j.apradiso.2007.04.02310.1016/j.apradiso.2007.04.02317616465
  36. 36. Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 2001;60(2):191-201. https://doi.org/10.1016/S0167-8140(01)00377-210.1016/S0167-8140(01)00377-2
  37. 37. Calvo OI, Gutiérrez AN, Stathakis S, et al. On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT. J Appl Clin Med Phys. 2012;13(3):43-59. https://doi.org/10.1120/jacmp.v13i3.375110.1120/jacmp.v13i3.3751571656022584174
  38. 38. Carrasco P, Jornet N, Duch MA, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium: dose calculation algorithms in lung heterogeneities. Med Phys. 2004;31(10):2899-911. https://doi.org/10.1118/1.178893210.1118/1.178893215543799
  39. 39. Fotina I, Kragl G, Kroupa B, et al. Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol. 2011;187(7):433-41. https://doi.org/10.1007/s00066-011-2215-910.1007/s00066-011-2215-921713394
  40. 40. Chopra KL, Leo P, Kabat C, et al. Evaluation of dose calculation accuracy of treatment planning systems in the presence of tissue heterogeneities. Ther Radiol Oncol. 2018;2:420-7. https://doi.org/10.21037/tro.2018.07.0110.21037/tro.2018.07.01
  41. 41. Stathakis S, Esquivel C, Quino LV, et al. Accuracy of the small field dosimetry using the Acuros XB dose calculation algorithm within and beyond heterogeneous media for 6 MV photon beams. Int J Med Phys Clin Eng Radiat Oncol. 2012; 1: 78–87. https://doi.org/10.4236/ijmpcero.2012.1301110.4236/ijmpcero.2012.13011
  42. 42. Najafzadeh M, Nickfarjam A, Jabbari K, et al. Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation. J X-Ray Sci Technol. 2019;27(1):161-75. https://doi.org/10.3233/XST-18042510.3233/XST-18042530614811
  43. 43. Caccia B, Andenna C, Iaccarino G, et al. Monte Carlo as a tool to evaluate the effect of different lung densities on radiotherapy dose distribution. Radiat Prot Dosim. 2014;162(1-2):115-9. https://doi.org/10.1093/rpd/ncu24110.1093/rpd/ncu24125452329
  44. 44. Palmans H, Andreo P, Huq MS, et al. Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS-483, the IAEA-AAPM international Code of Practice for reference and relative dose determination. Med Phys. 2018;45(11):e1123-e45. https://doi.org/10.1002/mp.1320810.1002/mp.1320830247757
DOI: https://doi.org/10.2478/pjmpe-2021-0022 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 181 - 190
Published on: Sep 27, 2021
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Mojtaba Abazarfard, Payam Azadeh, Ahmad Mostaar, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.