Have a personal or library account? Click to login
Effects of flattening filter (FF) and flattening filter-free (FFF) beams on small-field and large-field dose distribution using the VMAT treatment plan Cover

Effects of flattening filter (FF) and flattening filter-free (FFF) beams on small-field and large-field dose distribution using the VMAT treatment plan

Open Access
|Jul 2021

References

  1. 1. Ślosarek K. Podstawy planowania leczenia w radioterapii. Gliwice: Polskie Towarzystwo Onkologiczne, Oddział Śląski; 2007.
  2. 2. Malicki J, Ślosarek K. Planowanie leczenia i dozymetria w radioterapii. Gdańsk: VIA MEDICA; 2016.
  3. 3. Waligórski M, Lesiak J. Podstawy Radioterapii. Warszawa: PWN; 2000.
  4. 4. Łobodziec W. Dozymetria promieniowania jonizującego w radioterapii. Katowice: Wyd. UŚ; 1999.
  5. 5. Kukołowicz P. Charakterystyka wiązek terapeutycznych fotonów i elektronów. Kielce: RTA; 2001.
  6. 6. Van Dam J, Marinello G. Methods for in vivo dosimetry in external radiotherapy. Brussels: ESTRO; 1994.
  7. 7. Jia F, Xu D, Yue H, Wu H, Li G. Comparison of Flattening Filter and Flattening Filter-Free Volumetric Modulated Arc Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma. Med Sci Monit. 2018;24:8500-8505. https://doi.org/10.12659/MSM.91021810.12659/MSM.910218627672130472719
  8. 8. Ma C, Chen M, Long T, Parsons D, et al. Flattening filter free in intensity modulated radiotherapy (IMRT) - Theoretical modeling with delivery efficiency analysis. Med Phys. 2019;46(1):34-44. https://doi.org/10.1002/mp.1326710.1002/mp.1326730371944
  9. 9. Alvarez Moret J, Obermeier T, Pohl F. Second cancer risk after radiation therapy of ependymoma using the flattening filter free irradiation mode of a linear accelerator. J Appl Clin Med Phys. 2018;19(5):632-639. https://doi.org/10.1002/acm2.1243810.1002/acm2.12438612315830125453
  10. 10. Wang L, Ding G. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system. J Appl Clin Med Phys. 2018;19(4):319-324. https://doi.org/10.1002/acm2.1236710.1002/acm2.12367603634529896876
  11. 11. Yao C, Chang T, Lin C. Three-dimensional dose comparison of flattening filter (FF) and flattening filter-free (FFF) radiation therapy by using NIPAM gel dosimetry. PLoSOne. 2019;14(2):e0212546. https://doi.org/10.1371/journal.pone.021254610.1371/journal.pone.0212546638388630789968
  12. 12. Irazola L, Sánchez-Nieto B, García-Hernández M. 10-Mv SBRT FFF Irradiation Technique is associated to the lowest peripheral dose: the outcome of 142 treatment plans for the 10 most common tumor locations. Radiat Prot Dosimetry. 2019;185(2):183-195. https://doi.org/10.1093/rpd/ncy29210.1093/rpd/ncy29230649534
  13. 13. Aoki S, Yamashita H, Haga A. Flattening filter-free technique in volumetric modulated arc therapy for lung stereotactic body radiotherapy: A clinical comparison with the flattening filter technique. Oncol Lett. 2018;15(3):3928-3936. https://doi.org/10.3892/ol.2018.780910.3892/ol.2018.7809585493229563993
  14. 14. Duane S. Dosimetry for Flattening Filter Free (FFF) linac beams and small fields (SF). National Physics Laboratory, 2013.
  15. 15. Dobler B, Obermeier T, Hautmann M. Simultaneous integrated boost therapy of carcinoma of the hypopharynx/larynx with and without flattening filter - a treatment planning and dosimetry study. Radiat Oncol. 2017;12(1):114. https://doi.org/10.1186/s13014-017-0850-810.1186/s13014-017-0850-8549902528679448
  16. 16. Maier J, Knott B, Maerz M. Simultaneous integrated boost (SIB) radiation therapy of right sided breast cancer with and without flattening filter - A treatment planning study. Radiat Oncol. 2016;11(1):111. https://doi.org/10.1186/s13014-016-0687-610.1186/s13014-016-0687-6500663327577561
  17. 17. Dobler B, Maier J, Knott B. Second Cancer Risk after simultaneous integrated boost radiation therapy of right sided breast cancer with and without flattening filter. Strahlenther Onkol. 2016;192(10):687-95. https://doi.org/10.1007/s00066-016-1025-510.1007/s00066-016-1025-527534409
  18. 18. Baic B, Kozłowska B, Kwiatkowski R, Dybek M. Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams. Nukleonika;2019:64(3):77-86. https://doi.org/10.2478/nuka-2019-001010.2478/nuka-2019-0010
  19. 19. Ślosarek K, Grządziel A, Szlag M, Bystrzycka J. Radiation Planning Index for dose distribution evaluation in stereotactic radiotherapy. Reports of Practical Oncology and Radiotherapy. 2008;13(4):182-186. https://doi.org/10.1016/S1507-1367(10)60007-710.1016/S1507-1367(10)60007-7
  20. 20. Leszczyński W, Ślosarek K, Szlag M. Comparison of dose distribution in IMRT and RapidArc technique in prostate radiotherapy.Reports of Practical Oncology and Radiotherapy, 2012;17(6):348-351. https://doi.org/10.1016/j.rpor.2012.05.00210.1016/j.rpor.2012.05.002386325324377036
  21. 21. Radwan M, Grządziel A, Hawrylewicz L, Ślosarek K, Osewski W. The influence of photon energy on dose distribution for IMRT and VMAT plans. Nowotwory Journal of Oncology. 2014;64(3):230-236. https://doi.org/10.5603/NJO.2014.003710.5603/NJO.2014.0037
DOI: https://doi.org/10.2478/pjmpe-2021-0016 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 137 - 141
Published on: Jul 1, 2021
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Dominika J. Plaza, Klaudia M. Orzechowska, Krzysztof T. Ślosarek, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.