Have a personal or library account? Click to login
Evaluation of the performance of designed coaxial antennas for hyperthermia using simulation and experimental methods Cover

Evaluation of the performance of designed coaxial antennas for hyperthermia using simulation and experimental methods

Open Access
|Mar 2021

References

  1. 1. Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351-69. https://doi.org/10.1148/radiol.1008163410.1148/radiol.10081634693995721273519
  2. 2. Ryan TP, Brace CL. Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance. Int J Hyperthermia. 2017;33(1):3-14. https://doi.org/10.1080/02656736.2016.121488410.1080/02656736.2016.121488427492859
  3. 3. Healey TT, March BT, Baird G, Dupuy DE. Microwave Ablation for Lung Neoplasms: A Retrospective Analysis of Long-Term Results. J Vasc Interv Radiol. 2017;28(2):206-211. https://doi.org/10.1016/j.jvir.2016.10.03010.1016/j.jvir.2016.10.03027993505
  4. 4. Maciolek KA, Abel EJ, Best SL, et al. Percutaneous microwave ablation for local control of metastatic renal cell carcinoma. Abdom Radiol (NY). 2018;43(9):2446-2454. https://doi.org/10.1007/s00261-018-1498-z10.1007/s00261-018-1498-z29464274
  5. 5. Izzo F, Granata V, Grassi R, et al. Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. The Oncologist. 2019;24(10):e990-e1005. https://doi.org/10.1634/theoncologist.2018-033710.1634/theoncologist.2018-0337679515331217342
  6. 6. Meloni MF, Chiang J, Laeseke PF, et al. Microwave ablation in primary and secondary liver tumours: technical and clinical approaches. Int J Hyperthermia. 2017;33(1):15-24. https://doi.org/10.1080/02656736.2016.120969410.1080/02656736.2016.1209694523599327416729
  7. 7. Zhou W, Zha X, Liu X, et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology. 2012;263(2):364-73. https://doi.org/10.1148/radiol.1211190110.1148/radiol.1211190122438362
  8. 8. Ierardi AM, Biondetti P, Coppola A, et al. Percutaneous microwave thermosphere ablation of pancreatic tumours. Gland Surg. 2018;7(2):59-66. https://doi.org/10.21037/gs.2017.11.0510.21037/gs.2017.11.05593826529770302
  9. 9. Fan QY, Zhou Y, Zhang M, et al. Microwave ablation of malignant extremity bone tumors. Springerplus. 2016;5(1):1373. https://doi.org/10.1186/s40064-016-3005-810.1186/s40064-016-3005-8499247827606161
  10. 10. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25:S69-83. https://doi.org/10.1148/rg.25si05550110.1148/rg.25si05550116227498
  11. 11. Bertram JM, Yang D, Converse MC, et al. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. Biomed Eng Online. 2006;9:1-9. https://doi.org/10.1186/1475-925X-5-1510.1186/1475-925X-5-15150102616504153
  12. 12. Yang D, Bertram JM, Converse MC, et al. A floating sleeve antenna yields localized hepatic microwave ablation. IEEE Trans Biomed Eng. 2006;53(3):533-7. https://doi.org/10.1109/TBME.2005.86979410.1109/TBME.2005.86979416532780
  13. 13. Luyen H, Hagness SC, Behdad N. A balun-free helical antenna for minimally invasive microwave ablation. IEEE Trans Antennas Propag. 2015;63:533-65. https://doi.org/10.1109/TAP.2015.238922310.1109/TAP.2015.2389223
  14. 14. Brace CL. Dual-slot antennas for microwave tissue heating : Parametric design analysis and experimental validation. Med Phys. 2011;38(7):4232-4240. https://doi.org/10.1118/1.360101910.1118/1.3601019314522021859025
  15. 15. Bertram JM, Yang D, Converse MC, et al. A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit Rev Biomed Eng. 2006;34:187-213. https://doi.org/10.1615/critrevbiomedeng.v34.i3.1010.1615/CritRevBiomedEng.v34.i3.1016930124
  16. 16. Ibitoye AZ, Orotoye T, Nwoye EO, Aweda MA. Analysis of efficiency of different antennas for microwave ablation using simulation and experimental methods Egypt J Basic Appl Sci. 2018;5:24–30. https://doi.org/10.1016/j.ejbas.2018.01.00510.1016/j.ejbas.2018.01.005
  17. 17. Brace CL. Microwave Tissue Ablation: Biophysics, technology, and applications. Crit Rev Biomed Eng. 2010;38(1):65-78. https://doi.org/10.1615/critrevbiomedeng.v38.i1.6010.1615/CritRevBiomedEng.v38.i1.60
  18. 18. Lubner MG, Brace CL, Hinshaw JL, Lee Jr FT. Microwave tumor ablation: Mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21:S192–S203. https://doi.org/10.1016/j.jvir.2010.04.00710.1016/j.jvir.2010.04.007306597720656229
  19. 19. Prakash P. Theoretical modeling for hepatic microwave ablation. Open Biomed Eng J. 2010;4:27-38. https://doi.org/10.2174/187412070100402002710.2174/1874120701004020027284058520309393
  20. 20. Fallahi H, Prakash P. Antenna Designs for Microwave Tissue Ablation. Crit Rev Biomed Eng. 2018;46(6):495-521. https://doi.org/10.1615/CritRevBiomedEng.201802855410.1615/CritRevBiomedEng.2018028554639189030806212
  21. 21. Ibitoye AZ, Nwoye EO, Aweda MA, et al. Optimization of dual-slot antenna using floating metallic sleeve for microwave ablation. Med Eng Phys. 2015;37(4):384-91. https://doi.org/10.1016/j.medengphy.2015.01.01510.1016/j.medengphy.2015.01.01525686672
  22. 22. Hand JW. Modelling the interaction of electromagnetic fields (10 MHz–10 GHz) with the human body: methods and applications. Phys Med Biol. 2008;53(16):R243–R286. https://doi.org/10.1088/0031-9155/53/16/R0110.1088/0031-9155/53/16/R0118653928
  23. 23. Deshazer G, Prakash P, Merck D, Haemmerich D. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Int J Hyperthermia. 2017;33(1):74-82. https://doi.org/10.1080/02656736.2016.120663010.1080/02656736.2016.1206630555219827431040
  24. 24. Chiang J, Wang P, Brace CL. Computational modelling of microwave tumour ablations, Int J Hyperthermia. 2013;29(4):308-317. https://doi.org/10.3109/02656736.2013.79929510.3109/02656736.2013.799295376815823738698
  25. 25. Chiang J, Hynes K, Bedoya M, Brace CL. A dual-slot microwave antenna for more spherical ablation zones: Ex vivo and in vivo validation. Radiology. 2013;268(2):382–389. https://doi.org/10.1148/radiol.1312212810.1148/radiol.13122128372105323579048
  26. 26. COMSOL Multiphysics users’ guide. Electromagnetic module and heat transfer module, Version 4.4; www.comsol.com/models
  27. 27. Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.0, May 15, 2018. Accessed 05 June 2019. https://doi.org/10.13099/VIP21000-04-0
  28. 28. Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz. IFAC-CNR, Florence (Italy), 1997. Based on data published by C. Gabriel et al. in 1996. [Online]. Available: http://niremf.ifac.cnr.it/tissprop
  29. 29. Hines-Peralta AU, Pirani N, Clegg P, et al. Microwave Ablation: Results with a 2.45 GHz Applicator in vitro Bovine and in vivo Porcine Liver. Radiology. 2006;239(1):94-102. https://doi.org/10.1148/radiol.238305026210.1148/radiol.238305026216484351
  30. 30. Ruiter SJS, Heerink WJ, de Jong KP. Liver microwave ablation: a systematic review of various FDA-approved systems. Eur Radiol. 2019;29(8):4026-4035. https://doi.org/10.1007/s00330-018-5842-z10.1007/s00330-018-5842-z661106030506218
  31. 31. Zhou W, Liang M, Pan H, et al. Comparison of ablation zones among different tissues using 2450-MHz cooled-shaft microwave antenna: results in ex vivo porcine models. PloS One. 2013;8(8):e71873. https://doi.org/10.1371/journal.pone.007187310.1371/journal.pone.0071873374123223951262
  32. 32. Kuang M, Lu MD, Xie XY, et al. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna-experimental and clinical studies. Radiology. 2007;242(3):914–924. https://doi.org/doi.10.1148/radiol.242305202810.1148/radiol.242305202817229876
  33. 33. Ibitoye AZ, Nwoye EO, Aweda MA, et al. Microwave ablation of ex vivo bovine tissues using a dual-slot antenna with a floating metallic sleeve, Int J Hyperthermia. 2016;32(8): 923–930 https://doi.org/10.1080/02656736.2016.121132310.1080/02656736.2016.121132327431435
DOI: https://doi.org/10.2478/pjmpe-2021-0013 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 109 - 117
Published on: Mar 18, 2021
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Ayo Z Ibitoye, Obande C Ogese, Margaret B Adedokun, Muhammad Y Habeebu, Ephraim O Nwoye, Adebayo M Aweda, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.