8. Salomatina EV, Jiang B, Novak J, Yaroslavsky A. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J Biomed Opt. 2006;11(6):064026-1-9. https://doi.org/10.1117/1.239892810.1117/1.239892817212549
9. Honda N, Ishii K, Kajjmoto Y, Awazu K. Determination of optical properties of human brain tumor tissues from 350 to 1000nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid. J Biomed Opt. 2018;23(7):075006. https://doi.org/10.1117/1.JBO.23.7.07500610.1117/1.JBO.23.7.07500630006993
10. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt. 1999;38:4939-50. https://doi.org/10.1364/ao.38.00493910.1364/AO.38.004939
11. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier H-J. Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near Infrared spectral range. Phys Med Biol. 2002;47:2059-2073. https://doi.org/10.1088/0031-9155/47/12/30510.1088/0031-9155/47/12/305
13. Ozer K, Bozkulak O, Tabakoglu HO, Kurt A, Gulsoy M. Optical properties of native and coagulated lamb brain tissues in vitro in the visible and near-infrared spectral range. In: Jacques S, Roach WP, eds. Optical Interactions with Tissue and Cells XVII. Vol 6084. SPIE;2006:60840P-1-8. https://doi.org/10.1117/12.64607710.1117/12.646077
14. Azimipour M, Baumgartner R, Liu Y, Jacques SL, Eliceiri K, Pashaie R. Extraction of optical properties and prediction of light distribution in rat brain tissue. J Biomed Opt. 2014;19(7):075001-11. https://doi.org/10.1117/1.JBO.19.7.07500110.1117/1.JBO.19.7.075001
16. Aung H, De Angelo B, Soldano J, Kostyk P, Rodriguez B, Xu M. On alterations in the refractive index and scattering properties of biological tissue caused by histological processing. In: Wax AP, Beckman V, eds. Biomedical Applications of Light Scattering VII. Vol 8592. SPIE;2013:85920X-1-8. https://doi.org/10.1117/12.200592710.1117/12.2005927
19. Pitzschke A, Lovisa B, Seydoux O. et al. Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen and formalin-fixated conditions. J Biomed Opt. 2015:20(2):025006. https://doi.org/10.1117/1.JBO.20.2.02500610.1117/1.JBO.20.2.02500625706688
22. van der Zee P. Measurement and Modelling of the Optical Properties of Human Tissue in the Near Infrared. Ph.D. Dissertation, University of London, London, U.K., 1992.
24. Roysten D, Poston R, Prahl S. Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064nm. J Biomed Opt. 1996;1(1):110-116. https://doi.org/10.1117/12.22769810.1117/12.22769823014651
25. Shahin A, Bachir W, Sayem El-Daher M. Polystyrene microsphere optical properties by Kubelka-Munk and diffusion approximation with a single integrating sphere system: a comparative study. J Spec. 2019:3406319. https://doi.org/10.1155/2019/340631910.1155/2019/3406319
29. Friebel M, Roggan A, Muller G, Meinke M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J Biomed Opt. 2006;11(3):034021. https://doi.org/10.1117/1.220365910.1117/1.220365916822070
30. Lovell AT, Hebden JC, Goldstone LC, Cope M. Determination of the transport scattering coefficient of red blood cells. In: Chance B, Alfano RR, Tromberg BJ, eds. Optical Tomography and Spectroscopy of Tissue III. Vol 3597. SPIE;1999:175-182. https://doi.org/10.1117/12.35679510.1117/12.356795