Have a personal or library account? Click to login
Optical investigation of bovine grey and white matters in visible and near-infrared ranges Cover

Optical investigation of bovine grey and white matters in visible and near-infrared ranges

Open Access
|Mar 2021

References

  1. 1. Eggert H R, Blazek V. Optical properties of human brain tissue, meninges and brain tumors in the spectral range of 200 to 900nm. Neurosurgery. 1987;21 (4):459-464. https://doi.org/10.1227/00006123-198710000-0000310.1227/00006123-198710000-00003
  2. 2. Taddeucci A, Martelli F, Barilli M, Ferrari M, Zaccanti G. Optical properties of brain tissue. J Biomed Opt. 1996;1(1):117-123. https://doi.org/10.1117/12.22781610.1117/12.227816
  3. 3. Sandell J, Zhu T. A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics. 2011;4(11):773-787. https://doi.org/10.1002/jbio.20110006210.1002/jbio.201100062
  4. 4. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37-R61. https://doi.org/10.1088/0031-9155/58/11/R3710.1088/0031-9155/58/11/R37
  5. 5. Holmer C, Lehmann K, Wanken J, et al. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction. J Biomed Opt. 2007;12(1):014025-1-8. https://doi.org/10.1117/1.256479310.1117/1.2564793
  6. 6. Lin WC, Toms SA, Johnson M, Jansen ED, Mahadevan-Jansen A. In vivo brain tumor demarcation using optical spectroscopy. J Photochem Photobiol. 2001;73:396-402. https://doi.org/10.1562/0031-8655(2001)0730396IVBTDU2.0.CO210.1562/0031-8655(2001)0730396IVBTDU2.0.CO2
  7. 7. Mourant JR, Freyer JR, Hielscher AH, Eick AA, Shen D, Johnson TM. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt. 1998;37:3586-3593. https://doi.org/10.1364/ao.37.00358610.1364/AO.37.00358618273328
  8. 8. Salomatina EV, Jiang B, Novak J, Yaroslavsky A. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J Biomed Opt. 2006;11(6):064026-1-9. https://doi.org/10.1117/1.239892810.1117/1.239892817212549
  9. 9. Honda N, Ishii K, Kajjmoto Y, Awazu K. Determination of optical properties of human brain tumor tissues from 350 to 1000nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid. J Biomed Opt. 2018;23(7):075006. https://doi.org/10.1117/1.JBO.23.7.07500610.1117/1.JBO.23.7.07500630006993
  10. 10. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt. 1999;38:4939-50. https://doi.org/10.1364/ao.38.00493910.1364/AO.38.004939
  11. 11. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier H-J. Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near Infrared spectral range. Phys Med Biol. 2002;47:2059-2073. https://doi.org/10.1088/0031-9155/47/12/30510.1088/0031-9155/47/12/305
  12. 12. Gebhart SC, Lin WC, Mahadevan-Jansen A. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys Med Biol. 2006;51:2011-2027. https://doi.org/10.1088/0031-9155/51/8/00410.1088/0031-9155/51/8/004
  13. 13. Ozer K, Bozkulak O, Tabakoglu HO, Kurt A, Gulsoy M. Optical properties of native and coagulated lamb brain tissues in vitro in the visible and near-infrared spectral range. In: Jacques S, Roach WP, eds. Optical Interactions with Tissue and Cells XVII. Vol 6084. SPIE;2006:60840P-1-8. https://doi.org/10.1117/12.64607710.1117/12.646077
  14. 14. Azimipour M, Baumgartner R, Liu Y, Jacques SL, Eliceiri K, Pashaie R. Extraction of optical properties and prediction of light distribution in rat brain tissue. J Biomed Opt. 2014;19(7):075001-11. https://doi.org/10.1117/1.JBO.19.7.07500110.1117/1.JBO.19.7.075001
  15. 15. Wood MFG, Vurgun N, Wallenburg MA, Vitkin IA. Effects of formalin fixation on tissue optical polarization properties. Phys Med Biol. 2011;56(8):115-122. https://doi.org/10.1088/0031-9155/56/8/N0110.1088/0031-9155/56/8/N01
  16. 16. Aung H, De Angelo B, Soldano J, Kostyk P, Rodriguez B, Xu M. On alterations in the refractive index and scattering properties of biological tissue caused by histological processing. In: Wax AP, Beckman V, eds. Biomedical Applications of Light Scattering VII. Vol 8592. SPIE;2013:85920X-1-8. https://doi.org/10.1117/12.200592710.1117/12.2005927
  17. 17. Abe M, Takahashi M, Horiuchi K, Nagano A. The changes in crosslink contents in tissue after formalin fixation. Anal Biochem. 2003;318(1):118-123. https://doi.org/10.1016/S0003-2697(03)00194-510.1016/S0003-2697(03)00194-5
  18. 18. Hsiung P-L, Nambiar P, Fujimoto J. Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography. J Biomed Opt. 2005;10(6):064033. https://doi.org/10.1117/1.214715510.1117/1.214715516409098
  19. 19. Pitzschke A, Lovisa B, Seydoux O. et al. Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen and formalin-fixated conditions. J Biomed Opt. 2015:20(2):025006. https://doi.org/10.1117/1.JBO.20.2.02500610.1117/1.JBO.20.2.02500625706688
  20. 20. Anand S, Cicchi R, Martelli F, et al. Effects of formalin fixation on tissue optical properties of in-vitro brain samples. In: Jansen D, ed. Optical Interactions with Tissue and Cells XXVI. Vol 9321. SPIE;2015:93210Z1-5. https://doi.org/10.1117/12.207696110.1117/12.2076961
  21. 21. Wilson BC, Patterson MS, Flock ST. Indirect versus direct techniques for the measurement of the optical properties of tissues. J Photochem Photobiol. 1987;46(55):601-608. https://doi.org/10.1111/j.1751-1097.1987.tb04820.x10.1111/j.1751-1097.1987.tb04820.x3441488
  22. 22. van der Zee P. Measurement and Modelling of the Optical Properties of Human Tissue in the Near Infrared. Ph.D. Dissertation, University of London, London, U.K., 1992.
  23. 23. Prahl, S. Light Transport in Tissue. Ph.D. Dissertation, University Texas, Austin, U.S.A., 1988.
  24. 24. Roysten D, Poston R, Prahl S. Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064nm. J Biomed Opt. 1996;1(1):110-116. https://doi.org/10.1117/12.22769810.1117/12.22769823014651
  25. 25. Shahin A, Bachir W, Sayem El-Daher M. Polystyrene microsphere optical properties by Kubelka-Munk and diffusion approximation with a single integrating sphere system: a comparative study. J Spec. 2019:3406319. https://doi.org/10.1155/2019/340631910.1155/2019/3406319
  26. 26. Prahl, S. Inverse Adding-Doubling XP version-3-9-5; School of Medicine, Oregon Health and Science University: Portland, 2018.
  27. 27. van de Hulst HC. Light Scattering by Small Particles. New York: Dover publication; 1981.
  28. 28. Ashoor HE, Jasim Kh E. Determining the optical properties of blood using He-Ne laser and double integrating sphere set-up. Polish J Med Phys Eng. 2019;25(1):1-5. https://doi.org/10.2478/pjmpe-2019-000110.2478/pjmpe-2019-0001
  29. 29. Friebel M, Roggan A, Muller G, Meinke M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J Biomed Opt. 2006;11(3):034021. https://doi.org/10.1117/1.220365910.1117/1.220365916822070
  30. 30. Lovell AT, Hebden JC, Goldstone LC, Cope M. Determination of the transport scattering coefficient of red blood cells. In: Chance B, Alfano RR, Tromberg BJ, eds. Optical Tomography and Spectroscopy of Tissue III. Vol 3597. SPIE;1999:175-182. https://doi.org/10.1117/12.35679510.1117/12.356795
  31. 31. Sun Y, Fischer BM, Pickwell-MacPherson E. Effects of formalin fixing on the terahertz properties of biological tissues. J Biomed Opt. 2009;14(6):064017-1-7. https://doi.org/10.1117/1.326843910.1117/1.326843920059255
DOI: https://doi.org/10.2478/pjmpe-2021-0012 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 99 - 107
Published on: Mar 18, 2021
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Ali Shahin, Wesam Bachir, Moustafa Sayem El-Daher, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.