Have a personal or library account? Click to login
Effects of detection system parameters on cross-correlations between MUAPs generated from parallel and inclined muscle fibres Cover

Effects of detection system parameters on cross-correlations between MUAPs generated from parallel and inclined muscle fibres

Open Access
|Mar 2021

References

  1. 1. Dimitrova NA, Dimitrov AG, Dimitrov GV, et al. Calculation of extracellular potentials produced by an inclined muscle fibre at a rectangular plate electrode. Med Eng Phys. 1999:21(8):583-588. https://doi.org/10.1016/s1350-4533(99)00087-910.1016/S1350-4533(99)00087-9
  2. 2. Mesin L, Farina D. Simulation of surface EMG signals generated by muscle tissues with inhomogeneity due to fiber pinnation. IEEE Trans Biomed Eng. 2004:51(9):1521-1529. https://doi.org/10.1109/TBME.2004.82755110.1109/TBME.2004.827551
  3. 3. Teklemariam A, Hodson-Tole EF, Reeves ND, Costen NP, Cooper G, et al. A finite element model approach to determine the influence of electrode design and muscle architecture on myoelectric signal properties. PLoS-ONE. 2016:11(2):1-18. https://doi.org/10.1371/journal.pone.014827510.1371/journal.pone.0148275475753726886908
  4. 4. Farina D, Cescon C, Merletti R, et al. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern. 2002:86(6):445-456. https://doi.org/10.1007/s00422-002-0309-210.1007/s00422-002-0309-212111273
  5. 5. Farina D, Merletti R, Enoka RM, et al. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2004:96(4):1486-1495. https://doi.org/10.1152/japplphysiol.01070.200310.1152/japplphysiol.01070.200315016793
  6. 6. Messaoudi N, Bekka RE. Simulated surface EMG signal as a function of physiological and non-physiological parameters: Analyze and interpretation. 2015: The Fourth International Conference on Electrical Engineering, ICEE2015, Boumerdes, Algeria, Proceedings, IEEE Xplore. https://doi.org/10.1109/INTEE.2015.741680110.1109/INTEE.2015.7416801
  7. 7. Fuglevand A, Winter DA, Patla AE, Stashuk D, et al. Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern. 1992:67(2):143-153. https://doi.org/10.1007/BF0020102110.1007/BF002010211627684
  8. 8. Farina D, Arendt-Nielsen L, Merletti R, Indino B, Graven-Nielsen T, et al. Selectivity of spatial filters for surface EMG detection from the tibialis anterior muscle. IEEE Trans Biomed Eng. 2003:50(3):354-364. https://doi.org/10.1109/TBME.2003.80883010.1109/TBME.2003.80883012669992
  9. 9. Zhou P, Suresh NL, Lowery MM, Rymer WZ, et al. Nonlinear spatial filtering of multichannel surface electromyogram signals during low force contractions. IEEE Trans Biomed Eng. 2009:56(7):1871-1879. https://doi.org/10.1109/TBME.2009.201773610.1109/TBME.2009.201773619342344
  10. 10. Östlund N, Yu J, Roeleveld K, Karlsson JS, et al. Adaptive spatial filtering of multichannel surface electromyogram signals. Med Biol Eng Comput. 2004:42(6):825-831. https://doi.org/10.1007/BF0234521710.1007/BF0234521715587475
  11. 11. Messaoudi N, Bekka RE, Belkacem S, et al. Cross-Correlation coefficient as a means for estimating the effect of MVC level according to the fibres inclination’, The Fifth International Conference on Electrical Engineering. 2017: ICEE2017, Boumerdes, Algeria, Proceedings, IEEE Xplore. https://doi.org/10.1109/ICEE-B.2017.819216610.1109/ICEE-B.2017.8192166
  12. 12. Beck TW, Housh TJ, Cramer JT, Weir JP, et al. The effects of inter-electrode distance over the innervation zone and normalization on the electromyographic amplitude and mean power frequency versus concentric, eccentric, and isometric torque relationships for the vastus lateralis muscle. J Electromyogr Kinesiol. 2009:19(2): 219-231. https://doi.org/10.1016/j.jelekin.2007.07.00710.1016/j.jelekin.2007.07.00717884581
  13. 13. Messaoudi N, Bekka RE. From single fibre action potential to surface electromyographic signal: A simulation study. Third International Conference, IWBBIO 2015, Granada, Spain, Proceedings, Part I, LNCS 9043, April 15-17, 2015:315–324. https://doi.org/10.1007/978-3-319-16483-0_3210.1007/978-3-319-16483-0_32
  14. 14. Farina D, Mesin L, Simone M, Merletti R, et al. A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans Biomed Eng. 2004: 1(3): 415-426. https://doi.org/10.1109/TBME.2003.82099810.1109/TBME.2003.82099815000373
  15. 15. Fuglevand AJ, Winter DA, Patla AE, et al. Models of recruitment and rate coding organisation in motor-unit pools. J Neurophysiol. 1993:70(6):2470-2488. https://doi.org/10.1152/jn.1993.70.6.247010.1152/jn.1993.70.6.24708120594
  16. 16. Rosenfalck P. Intra and extracellular fields of active nerve and muscle fibres: A physico-mathematical analysis of different models. Acta Physiol Scand Suppl. 1969:321:1-168.
  17. 17. Messaoudi N, Bekka RE, Ravier P, Harba R, et al. Assessment of the non-Gaussianity and non-linearity levels of simulated sEMG signals on stationary segments. J Electromyog Kinesiol. 2017:32(1): 70-82. https://doi.org/10.1016/j.jelekin.2016.12.00610.1016/j.jelekin.2016.12.00628061379
  18. 18. Keenan KG, Valero-Cuevas FJ. Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties. J. Neurophysiol. 2007:98(3):1581-1590. https://doi.org/10.1152/jn.00577.200710.1152/jn.00577.200717615125
  19. 19. Keenan KG, Farina D, Meyer FG, Merletti R, Enoka RM, et al. Sensitivity of the cross-correlation between simulated surface EMGs for two muscles to detect motor unit synchronization. J App Physiol. 2007:102:1193-1201. https://doi.org/10.1152/japplphysiol.00491.200610.1152/japplphysiol.00491.200617068220
  20. 20. Farina D, Merletti R. A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Trans Biomed Eng. 2001:48(6):637-646. https://doi.org/10.1109/10.92378210.1109/10.92378211396594
  21. 21. Messaoudi N, Bekka RE, Belkacem S, et al. Classification of the systems used in surface electromyographic signal detection according to the degree of isotropy. Adv Biomed Eng. 2018:7(1):107-116. https://doi.org/10.14326/abe.7.10710.14326/abe.7.107
  22. 22. Barbero M, Rainoldi A, Merletti R, et al. Atlas of muscle innervation zones: understanding surface EMG and its applications. Springer, Italy 2012. https://doi.org/10.1007/978-88-470-2463-210.1007/978-88-470-2463-2
  23. 23. Merletti R, Farina D. (edts) Surface Electromyography: physiology, engineering and applications, IEEE Press / J Wiley, USA, May 2016.10.1002/9781119082934
  24. 24. Afsharipour B, Soedirdjo S, Merletti R, et al. Two-dimensional surface EMG: The effects of electrode size, interelectrode distance and image truncation. Biomed Sig Process Control. 2019: 49(1):298-307. https://doi.org/10.1016/j.bspc.2018.12.00110.1016/j.bspc.2018.12.001
  25. 25. Messaoudi N, Bekka RE, Belkacem S, et al. Influence of fibers inclination on the degree of gaussianity of simulated surface EMG signals. ICBBT 2020, May 22–24, 2020, Xi’an, China. https://doi.org/10.1145/3405758.340578110.1145/3405758.3405781
DOI: https://doi.org/10.2478/pjmpe-2021-0011 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 87 - 97
Published on: Mar 18, 2021
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Noureddine Messaoudi, Raïs El’hadi Bekka, Samia Belkacem, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.