Have a personal or library account? Click to login
Preliminary study in the analysis of the severity of cardiac pathologies using the higher-order spectra on the heart-beats signals Cover

Preliminary study in the analysis of the severity of cardiac pathologies using the higher-order spectra on the heart-beats signals

Open Access
|Mar 2021

References

  1. 1. World Health Organization.Cardiovascular diseases. https://www.who.int/westernpacific/health-topics/cardiovascular-diseases.
  2. 2. Debbal SM. Computerized Heart Sounds Analysis. In: Discrete Wavelet Transforms: Biomedical Applications. IntechOpen, 2011. https://doi.org/10.5772/2370010.5772/23700
  3. 3. Li X, Zhong L, Luo L, et al. Synchronization control of pulsatile ventricular assist devices by combination usage of different physiological signals. Comput Assist Surg. 2019;24:105-112. https://doi.org/10.1080/24699322.2018.156008910.1080/24699322.2018.156008930760103
  4. 4. Ahmad MS, Mir J, Ullah MO, et al. An efficient heart murmur recognition and cardiovascular disorders classification system. Australas Phys Eng Sci Med. 2019;42:733-743. https://doi.org/10.1007/s13246-019-00778-x10.1007/s13246-019-00778-x31313129
  5. 5. Meziani F, Debbal SM, Atbi A. Analysis of phonocardiogram signals using wavelet transform. J Med Eng Technol. 2012;36:283-302. https://doi.org/10.3109/03091902.2012.68483010.3109/03091902.2012.68483022738192
  6. 6. Acharya UR, Sudarshan VK, Koh JEW, et al. Application of higher-order spectra for the characterization of Coronary artery disease using electrocardiogram signals. Biomed Signal Process Control. 2017;31:31-43. https://doi.org/10.1016/j.bspc.2016.07.00310.1016/j.bspc.2016.07.003
  7. 7. Mahmoodian N, Schaufler A, Pashazadeh A, et al. Proximal detection of guide wire perforation using feature extraction from bispectral audio signal analysis combined with machine learning. Comput Biol Med. 2019;107:10–17. https://doi.org/10.1016/j.compbiomed.2019.02.00110.1016/j.compbiomed.2019.02.00130769168
  8. 8. Vejdannik M, Sadr A. Automatic Microstructural Characterization and Classification Using Higher-Order Spectra on Ultrasound Signals. J Nondestruct Eval. 2016;35:16. https://doi.org/10.1007/s10921-015-0332-610.1007/s10921-015-0332-6
  9. 9. Bou Assi E, Gagliano L, Rihana S, et al. Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction. Sci Rep. 2018;8:15491. https://doi.org/10.1038/s41598-018-33969-910.1038/s41598-018-33969-9619559430341370
  10. 10. Martis RJ, Acharya UR, Adeli H. Current methods in electrocardiogram characterization. Comput Biol Med. 2014;48:133-149. https://doi.org/10.1016/j.compbiomed.2014.02.01210.1016/j.compbiomed.2014.02.01224681634
  11. 11. Nikias CL, Mendel JM. Signal processing with higher-order spectra. IEEE Signal Process Mag. 1993;10(3):10-37. https://doi.org/10.1109/79.22132410.1109/79.221324
  12. 12. Du X, Dua S, Acharya RU, Chua CK. Classification of Epilepsy Using High-Order Spectra Features and Principle Component Analysis. J Med Syst. 2012;36:1731-1743. https://doi.org/10.1007/s10916-010-9633-610.1007/s10916-010-9633-621222222
  13. 13. Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J. Higher-order spectral analysis of spontaneous speech signals in Alzheimer’s disease. Cogn Neurodyn. 2018;12:583-596. https://doi.org/10.1007/s11571-018-9499-810.1007/s11571-018-9499-8623332930483366
  14. 14. Mishra M, Pratiher S, Banerjee S, Mukherjee A. Grading heart sounds through variational mode decomposition and higher order spectral features. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) 1–5 (IEEE, 2018). https://doi.org/10.1109/I2MTC.2018.840962010.1109/I2MTC.2018.8409620
  15. 15. Mookiah MRK, Acharya UR, Lim CM, et al. Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl-Based Syst. 2012;33:73-82. https://doi.org/10.1016/j.knosys.2012.02.01010.1016/j.knosys.2012.02.010
  16. 16. Zhou SM, Gan JQ, Sepulveda F. Classifying mental tasks based on features of higher-order statistics from EEG signals in brain– computer interface. Inf Sci.2008;178:1629-1640. https://doi.org/10.1016/j.ins.2007.11.01210.1016/j.ins.2007.11.012
  17. 17. Du X, Dua S, Acharya RU, Chua CK. Classification of Epilepsy Using High-Order Spectra Features and Principle Component Analysis. J Med Syst. 2012;36:1731-1743. https://doi.org/10.1007/s10916-010-9633-610.1007/s10916-010-9633-6
  18. 18. Yugesh CK, Hariharan M, Yuvaraj R, et al. Bispectral features and mean shift clustering for stress and emotion recognition from natural speech. Comput Electr Eng. 2017;62:676-691. https://doi.org/10.1016/j.compeleceng.2017.01.02410.1016/j.compeleceng.2017.01.024
  19. 19. Ahmad TJ, Ali H, Khan SA. Classification of Phonocardiogram using an Adaptive Fuzzy Inference System. Proc. Int. Conf. Image Process. Comput Vis Pattern Recognit. Proceedings of the 2009 International Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2009, July 13-16, 2009, Las Vegas, Nevada, USA.
  20. 20. Meziani F, Debbal SM, Atbi A. Analysis of the pathological severity degree of aortic stenosis (AS) and mitral stenosis (MS) using the discrete wavelet transform (DWT). J Med Eng Technol. 2013;37:61-74. https://doi.org/10.3109/03091902.2012.73305810.3109/03091902.2012.73305823173773
  21. 21. Swami A, Mendel JM, Nikias CL. (1998). Higher-order spectral analysis toolbox. The Mathworks Inc, 3, 22-26.
  22. 22. eGeneral Medical Inc. USA. eGeneralMedical.com. http://www.egeneralmedical.com/listohearmur.html Accessed 20 Apr 2018.
  23. 23. http://www.cardiosource.com/heartsounds. Accessed 20 Apr 2018.
DOI: https://doi.org/10.2478/pjmpe-2021-0010 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 73 - 85
Published on: Mar 18, 2021
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Sid Ahmed Berraih, Yettou Nour Elhouda Baakek, Sidi Mohammed El Amine Debbal, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.