Have a personal or library account? Click to login
Analysis of the effect of external heating in the human tissue: A finite element approach Cover

Analysis of the effect of external heating in the human tissue: A finite element approach

Open Access
|Dec 2020

References

  1. 1. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology. 1948:1(2):93-122.10.1152/jappl.1948.1.2.93
  2. 2. Scott JA. A finite element model of heat transport in the human eye. Physics in Medicine and Biology. 1988:33(2):227.10.1088/0031-9155/33/2/003
  3. 3. Ooi EH, Ang W-T, Ng EYK. Bioheat transfer in the human eye: a boundary element approach. Engineering Analysis with Boundary Elements. 2007;31(6):494-500.10.1016/j.enganabound.2006.09.011
  4. 4. Kenneth DR, Hayes LJ. Analysis of tissue injury by burning: comparison of in situ and skin flap models. International Journal of Heat and Mass Transfer. 1991:34(6):1393-1406.10.1016/0017-9310(91)90283-K
  5. 5. Torvi DA, Dale JD. A finite element model of skin subjected to a flash fire. Journal of Biomechanical Engineering. 1994;116(3):250-255.10.1115/1.28957277799624
  6. 6. Bagaria HG, Johnson DT. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. International Journal of Hyperthermia. 2005;21(1):57-75.10.1080/0265673041000172695615764351
  7. 7. Javidi M, Heydari M, Karimi A, et al. Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy. Journal of Biomedical Physics & Engineering. 2014;4(4):151-162.
  8. 8. Liu H-L, Chen Y-Y, Yen J-Y, Lin W-L. Thermal lesion formation and determination for external ultrasound thermal therapy. Biomedical Engineering: Applications, Basis and Communications. 2003;15(3):124-132.
  9. 9. Mizera A, Gambin B. Modelling of ultrasound therapeutic heating and numerical study of the dynamics of the induced heat shock response. Communications in Nonlinear Science and Numerical Simulation. 2011;16(5):2342-2349.10.1016/j.cnsns.2010.04.056
  10. 10. Sukru O, Helhel S, Cerezci O. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT). Burns. 2008;34(1):45-49.10.1016/j.burns.2007.01.00917624675
  11. 11. Rabin Y, Shitzer A. Numerical solution of the multidimensional freezing problem during cryosurgery. Journal of Biomechanical Engineering. 1998;120(1):32-37.10.1115/1.28343049675678
  12. 12. Yeung CJ, Atalar E. A Green’s function approach to local rf heating in interventional MRI. Medical Physics. 2001;28(5):826-832.10.1118/1.136786011393478
  13. 13. Supan, Tungjitkusolmun, Staelin ST, Haemmerich D, et al. Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Transactions on Biomedical Engineering. 2002;49(1):3-9.10.1109/10.97283411797653
  14. 14. Sturesson C, Andersson-Engels S. A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications. Physics in Medicine and Biology.1995:40(12):2037-2052.10.1088/0031-9155/40/12/0038719943
  15. 15. Whiting P, Dowden JM, Kapadia PD, Davis MP. A one-dimensional mathematical model of laser induced thermal ablation of biological tissue. Lasers in Medical Science. 1992:7:357-368.10.1007/BF02594073
  16. 16. Nyborg WL. Solutions of the bio-heat transfer equation. Physics in Medicine and Biology. 1988;33(7):785.10.1088/0031-9155/33/7/0023212041
  17. 17. Deng Z_S, Liu J. Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. Journal of Biomechanical Engineering. 2002;124(6):638-649.10.1115/1.151681012596630
  18. 18. Emmanuel K, Lakhssassi A, Vaillancourt R. Temperature distribution in living biological tissue simultaneously subjected to oscillatory surface and spatial heating: analytical and numerical analysis. International Mathematical Forum. 2012;7(48):2373-2392.
  19. 19. Liu K-C. Thermal propagation analysis for living tissue with surface heating. International Journal of Thermal Sciences. 2008;4(5):507-513.
  20. 20. Ahmadikia H, Fazlali R, Moradi A. Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue. International Communications in Heat and Mass Transfer. 2012;39(1):121-130.10.1016/j.icheatmasstransfer.2011.09.016
  21. 21. Shih T-C, Yuan P, Lin W-L, Kou H-S. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Medical Engineering & Physics. 2007;29(9):946-953.10.1016/j.medengphy.2006.10.00817137825
  22. 22. Karaa S, Zhang J, Yang F. A numerical study of a 3D bioheat transfer problem with different spatial heating. Mathematics and Computers in Simulation. 2005;68(4):375-388.10.1016/j.matcom.2005.02.032
  23. 23. Kengne E Mellal I, Hamouda MB, Lakhssassi A. A Mathematical Model to Solve Bio-Heat Transfer Problems through a Bio-Heat Transfer Equation with Quadratic Temperature-Dependent Blood Perfusion under a Constant Spatial Heating on Skin Surface. Journal of Biomedical Science and Engineering 2014;7(9):721.10.4236/jbise.2014.79071
  24. 24. Sharma PR, Ali S, Katiyar VK. Mathematical modeling of temperature distribution on skin surface and inside biological tissue with different heating. 13th International Conference on Biomedical Engineering. Springer, Berlin, Heidelberg, 2009.
  25. 25. Yuan P, Liu H-E, Chen C-W, Kou H-S. Temperature response in biological tissue by alternating heating and cooling modalities with sinusoidal temperature oscillation on the skin. International Communications in Heat and Mass Transfer. 2008;35(9):1091-1096.10.1016/j.icheatmasstransfer.2008.05.012
  26. 26. Leilei C, Qin Q-H, Zhao N. An RBF–MFS model for analysing thermal behaviour of skin tissues. International Journal of Heat and Mass Transfer. 2010;53(7):1298-1307.
  27. 27. Deng Z-S, Liu J. Parametric studies on the phase shift method to measure the blood perfusion of biological bodies. Medical Engineering & Physics. 2000;22(10):693-702.10.1016/S1350-4533(01)00015-7
  28. 28. Liu J, Xu LX. Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface. IEEE Transactions on Biomedical Engineering. 1999;46(9):1037-1043.10.1109/10.78413410493066
  29. 29. Partridge PW, Wrobel LC. A coupled dual reciprocity BEM/genetic algorithm for identification of blood perfusion parameters. International Journal of Numerical Methods for Heat & Fluid Flow. 2009;19(1):25-38.10.1108/09615530910922134
  30. 30. Mukaddes AMM, Ogino M, Shioya R. Performance evaluation of domain decomposition method with sparse matrix storage schemes in modern supercomputer. International Journal of Computational Methods. 2014;11(supp01):1344007.10.1142/S0219876213440076
  31. 31. Mukaddes AMM, Shioya R, Masao O, et al. Finite Element Based Analysis of Bio-Heat Transfer in Human Skin During Burn and Afterwards. International Journal of Computational Methods. https://doi.org/10.1142/S021987622041010810.1142/S0219876220410108
  32. 32. Holmes KR. Biological structures and heat transfer. Allerton Workshop on the Future of Biothermal Engineering. 1997.
  33. 33. Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Clarendon Press, 1959, 2nd ed. (1959).
  34. 34. Leonard JB, Foster KR, Athley TW. Thermal properties of tissue equivalent phantom materials. IEEE Transactions on Biomedical Engineering. 1984;31(7):533-536.10.1109/TBME.1984.3252966735431
  35. 35. London RA, Glinsky ME, Zimmerman GB, et al. Laser-Tissue Interaction Modeling With LATIS. Applied Optics. 1997;36(34):9068-9074.10.1364/AO.36.00906818264466
  36. 36. Deng Z-S, Liu J. Monte Carlo method to solve multidimensional bioheat transfer problem. Numerical Heat Transfer: Part B: Fundamental. 2002;42(6):543-567.10.1080/10407790260444813
  37. 37. Habash R, Bansal R, Krewski D, et al. Thermal therapy, part 1: an introduction to thermal therapy. Critical Reviews in Biomedical Engineering. 2006;34(6):459-489.10.1615/CritRevBiomedEng.v34.i6.20
  38. 38. Habash R, Bansal R, Krewski D, et al. Thermal therapy, part 2: hyperthermia techniques. Critical Reviews in Biomedical Engineering. 2006;34(6):491-542.10.1615/CritRevBiomedEng.v34.i6.3017725480
  39. 39. Habash R, Bansal R, Krewski D, et al. Thermal therapy, Part III: ablation techniques. Critical Reviews in Biomedical Engineering. 2007;35(1-2):37-121.10.1615/CritRevBiomedEng.v35.i1-2.20
  40. 40. Xiaoming H, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery. Critical Reviews in Biomedical Engineering. 2003;31(5-6):355-422.10.1615/CritRevBiomedEng.v31.i56.10
  41. 41. Liu J, Xu LX. Boundary information based diagnostics on the thermal states of biological bodies. International Journal of Heat and Mass Transfer. 2000;43(16):2827-2839.10.1016/S0017-9310(99)00367-1
  42. 42. Ma N, Gao X, Zhang XX. Two-Layer Simulation Model of Laser-Induced Interstitial Thermo-Therapy. Lasers in Medical Science. 2004;18:184-189.10.1007/s10103-003-0278-215042421
  43. 43. Scott JA. The computation of temperature rises in the human eye induced by infrared radiation. Physics in Medicine and Biology. 1988:33(2):243-257.10.1088/0031-9155/33/2/0043362967
DOI: https://doi.org/10.2478/pjmpe-2020-0030 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 251 - 262
Published on: Dec 24, 2020
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Mridul Sannyal, Abul Mukid Mohammad Mukaddes, Md. Matiar Rahman, M. A. H. Mithu, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.