Have a personal or library account? Click to login
Fluence map optimisation for prostate cancer intensity modulated radiotherapy planning using iterative solution method Cover

Fluence map optimisation for prostate cancer intensity modulated radiotherapy planning using iterative solution method

Open Access
|Dec 2020

References

  1. 1. Bortfeld T. IMRT: a review and preview. Phys Med Biol. 2006;51(13):R363-R379.10.1088/0031-9155/51/13/R2116790913
  2. 2. Hatano K, Araki A, Sakai M, et al. Current status of intensity-modulated radiation therapy (IMRT). Int J Clin Oncol. 2007;12(6):408-415.10.1007/s10147-007-0703-918071859
  3. 3. Yu CX, Amies CJ, Svatos M. Planning and delivery of intensity-modulated radiation therapy. Med Phys. 2008:35(12):5233-5241.10.1118/1.300230519175082
  4. 4. Shepard DM, Ferris MC, Olivera GH, et al. Optimizing and delivery of radiation therapy to cancer patients. Siam Review. 1999:41(4):721-744.10.1137/S0036144598342032
  5. 5. Lim J, Ferris MC, Wright SJ, et al. An optimization framework for conformal radiation treatment planning. INFORMS J Comput. 2007;19(3):366-380.10.1287/ijoc.1060.0179
  6. 6. Morrill SM, Lane RG, Wong JA, et al. Dose-volume considerations with linear programming optimization. Med Phys. 1991;18(6):1201-1210.10.1118/1.5965921753905
  7. 7. Breedveld S, Storchi PRM, Keijzer M, et al. Fast, multiple optimizations of quadratic dose objective functions in IMRT. Phys Med Biol. 2006;51(14):3569-3579.10.1088/0031-9155/51/14/01916825749
  8. 8. Censor Y, Ben-Israel A, Xiao Y, et al. On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebr Appl. 2008;428(5-6):1406-1420.10.1016/j.laa.2007.11.001270171319562040
  9. 9. Rosen II, Lane RG, Morrill SM, et al. Treatment plan optimization using linear programming. Med Phys. 1991;18(2):141-152.10.1118/1.5967002046598
  10. 10. Allen H. Designing radiotherapy plans with elastic constraints and interior point methods. Health Care Manag Sci. 2003;6(1):5-16.10.1023/A:1021970819104
  11. 11. Bortfeld T, Bürkelbach J, Boesecke R, et al. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol. 1990;35(10):1423-1434.10.1088/0031-9155/35/10/007
  12. 12. Xing L, Hamilton RJ, Spelbring D, et al. Fast iterative algorithms for three-dimensional inverse treatment planning. Med Phys. 1998:25(10):1845-1849.10.1118/1.598374
  13. 13. Xing L, Chen GTY. Iterative methods for inverse treatment planning. Phys Med Biol. 1996:41(10):2107-2123.10.1088/0031-9155/41/10/018
  14. 14. Aleman DM, Mišić VV, Sharpe MB. Computational enhancements to fluence map optimization for total marrow irradiation using IMRT. Comput Oper Res. 2013;40(9):2167-2177.10.1016/j.cor.2011.05.028
  15. 15. Aleman DM, Glaser D, Romeijn HE, et al. Interior point algorithms: guaranteed optimality for fluence map optimization IMRT. Phys Med Biol. 2010;55(18):5467-5482.10.1088/0031-9155/55/18/013
  16. 16. Oskoorouchi MR, Ghaffari HR, Terlaky T, et al. An interior point constraint generation algorithm for semi-infinite optimization with health-care application. Oper Res. 2011;59(5):1184–1197.10.1287/opre.1110.0951
  17. 17. Hamacher KK, Küfer K-H. Inverse radiation therapy planning—a multiple objective optimization approach. Discrete Appl Math. 2002;118(1):145-161.10.1016/S0166-218X(01)00261-X
  18. 18. Halabi T, Craft D, Bortfeld T. Dose-volume objectives in multi-criteria optimization. Phys Med Biol. 2006;51(15):3809-3818.10.1088/0031-9155/51/15/01416861782
  19. 19. Deasy JO. Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med Phys. 1997:24(7):1157-1161.10.1118/1.5980179243478
  20. 20. Wu C, Jeraj R, Mackie TR. The method of intercepts in parameter space for the analysis of local minima caused by dose-volume constraints. Phys Med Biol. 2003;48(11):149-157.10.1088/0031-9155/48/11/40212817946
  21. 21. Wu Q, Mohan R. Multiple local minima in IMRT optimization based on dose-volume criteria. Med Phys. 2002;29(7):1514-1527.10.1118/1.148505912148734
  22. 22. Romeijn HE, Ahuja RA, Dempsey JF, et al. A new linear programming approach to radiation therapy treatment planning problems. Oper Res. 2006;54(2):201-216.10.1287/opre.1050.0261
  23. 23. Zhang Y, Merritt M. Dose–volume-based IMRT fluence optimization: a fast least-squares approach with differentiability. Linear Algebr Appl. 2008;428(5-6):1365-1387.10.1016/j.laa.2007.09.037
  24. 24. Spirou SV, Chui CS. A gradient inverse planning algorithm with dose-volume constraints. Med Phys. 1998:25(3): 321-333.10.1118/1.5982029547499
  25. 25. Cotrutz C, Xing L. Using voxel-dependent importance factors for interactive DVH-based dose optimization. Phys Med Biol. 2002:47(10):1659-1669.10.1088/0031-9155/47/10/30412069085
  26. 26. Yang Y, Xing L. Inverse treatment planning with adaptively evolving voxel-dependent penalty scheme. Med Phys. 2004;31(10):2839-2844.10.1118/1.179931115543792
  27. 27. Shou Z, Yang Y, Cotrutz C, et al. Quantification of the a priori dosimetric capabilities of spatial points in inverse planning and its significant implication in defining IMRT solution space. Phys Med Biol. 2005;(7):1469-1482.10.1088/0031-9155/50/7/01015798337
  28. 28. Zhaosong Lu, Zhang Y. Penalty decomposition methods for l0-norm minimization. arXiv preprint, arXiv:1008.53722, 2010.
  29. 29. Craft D, Bangert M, Long T, et al. Shared data for intensity modulated radiation therapy (IMRT) optimization research: the CORT dataset. GigaScience. 2014;3(1):2047–217X–3–37.10.1186/2047-217X-3-37432620725678961
  30. 30. Schmidt M, Berg E, Friedlander M, et al. Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm. In: Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics Artificial Intelligence and Statistics. 2009. pp. 456-463
  31. 31. Schmidt M. minConf: Projection methods for optimization with simple constraints in Matlab. 2008. [Online]. Available: http://www.cs.ubc.ca/~schmidtm/Software/minConf.html.
  32. 32. Grant M. Boyd S. CVX: Matlab software for disciplined convex programming,version 2.1. 2014. [Online]. Available: http://cvxr.com/cvx.
DOI: https://doi.org/10.2478/pjmpe-2020-0024 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 201 - 209
Published on: Dec 24, 2020
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Pushpendra Singh, Supriya Tripathi, Raunak Kumar Tamrakar, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.