Have a personal or library account? Click to login
Diagnosis of amyotrophic lateral sclerosis (ALS) disorders based on electromyogram (EMG) signal analysis and feature selection Cover

Diagnosis of amyotrophic lateral sclerosis (ALS) disorders based on electromyogram (EMG) signal analysis and feature selection

Open Access
|Sep 2020

References

  1. 1. Rissanen SM, Kankaanpaa M, Tarvainen MP, et al. Extraction of Typical Features from Surface EMG Signals in Paarkinson’s Disease. 11th International Congress of Parkinsons’s Disease and Movement Disorders, Istanbul, Turkey, 2007.
  2. 2. Rowland LP. Amyotrophic Lateral Sclerosis: Theories and Therapies. Ann. Neurol. 1994;35(2):129-130. doi: 1O.1002/ana.410350202.10.1002/ana.4103502028109893
  3. 3. Kaplanis PA, Pattichis CS, Hadjileontiadis LJ, Panas SM. Bispectral analysis ofsurface EMG. In: Proceedings of the 10th Mediterranean Electrotechnical Conference, vol. II. p. 770-773, 2000.10.1109/MELCON.2000.880047
  4. 4. Nazarpour K, Sharafat AR, Firoozabadi SMP. Application of higher order statisticsto surface electromyogram signal classification. IEEE Trans Biomed Eng. 2007;54(10):1762-1769.10.1109/TBME.2007.89482917926674
  5. 5. Meziani F, Rerbal S, Debbal SM. Spectro-temporal analysis of electromyogram signals (EMGs). Int J Med Eng Inf. 2019;22(2).10.1504/IJMEI.2019.098754
  6. 6. Raez MB, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol Proced Online. 2006;8:11-35.10.1251/bpo115145547916799694
  7. 7. Phinyomark A, Phukpattaranont P, Limsakul C. Feature Reduction and Selection for EMG Signal Classification. Expert Systems with Applications. 2012;39(8):7420-7431.10.1016/j.eswa.2012.01.102
  8. 8. Strazza A, Verdini F, Burattini L, et al. Time-frequency Analysis of Surface EMG signals for Maximum Energy Localization during Walking. In: Eskola H., Väisänen O., Viik J., Hyttinen J. (eds) EMBEC & NBC 2017. IFMBE Proceedings. 2018;65.10.1007/978-981-10-5122-7_124
  9. 9. Farge M. Wavelet Transforms and their Applications to Turbulence. Ann Rev Fluid Mech. 1992;24:395-457.10.1146/annurev.fl.24.010192.002143
  10. 10. Strazza A, Verdini F, Burattini L, et al. A Time-Frequency Approach for the Assessment of Dynamic Muscle Co-contractions. IFMBE Proceedings. 2019;68/2:223-22610.1007/978-981-10-9038-7_41
  11. 11. Ismail AR, Asfour SS. Continuous Wavelet Transform Application to EMG Signals During Human Gait. Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284), Pacific Grove, CA, 1998, pp. 325-329.10.1109/ACSSC.1998.750880
  12. 12. Mishra B, Wadhwani AK, Singh S. EMG Signal Classification for Neuromuscular Disorder using Soft-Computing Techniques. IJIRMPS. 2019;7(1):24-27.
  13. 13. J Too, Abdullah AR, Tengku Zawawi TNS, et al. Classification of EMG Signal Based on Time Domain and Frequency Domain Features International Journal of Human and Technology Interaction. 2017;1(1):25-29.
  14. 14. Nikolic M. Detailed analysis of clinical electromyography signals: Emg decomposition, findings and firing pattern analysis in controls and patients with myopathy and amytrophic lateral sclerosis. Ph.D. dissertation, 2001. Online. Available: http://www.emglab.net
  15. 15. Chua KC, Chandran V, Acharyaa UR, Lima CM. Application of higher order statistics/spectra in biomedical signals. Med Eng Phys. 2010;32(7):679-689.10.1016/j.medengphy.2010.04.00920466580
  16. 16. Nikias CL, Raghuveer MR. Bispectrum estimation a digital signal processing framework. Proceedings of the IEEE. 1987;75(7):869-891.10.1109/PROC.1987.13824
  17. 17. Nikias CL, Petropulu AP. Higher-order spectra analysis: a nonlinear Signal Processing Framework. Prentice-Hall, Englewood Cliffs, NJ; 1993.
  18. 18. Mishra A, Mishra V, Yadav VK. Comparison of normal and pathological gait using EMG signal. Int J Adv Res Sci Eng. 2017;6(2):442-451.
  19. 19. Cabrera C. Analyse du signal myoélectrique pour l’évaluation de la fatigue périphérique chez des nageurs de haut niveau en demi-fond. 2014.
  20. 20. Karthick PA, Ghosh DM, Ramakrishnan S. Surface electromyography-based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Comput Methods Programs Biomed. 2018;154:45-56.10.1016/j.cmpb.2017.10.02429249346
  21. 21. Khan S, Hussain M, Aboalsamh H, Bebis G. A comparison of different Gabor feature extraction approaches for mass classification in mammography. Multimedia Tools and Applications. 2017;76(1):33-57.10.1007/s11042-015-3017-3
  22. 22. Benazzouz A, Guilal R, Amirouche F, et al. EMG Feature Selection for Diagnosis of Neuromuscular Disorders. 2019 International Conference on Networking and Advanced Systems (ICNAS). 2019.10.1109/ICNAS.2019.8807862
  23. 23. Xing K., Yang P, Huang J, et al. A real-time EMG pattern recognition method for virtual myoelectric hand control. Neurocomputing. 2014;136:345-355.10.1016/j.neucom.2013.12.010
DOI: https://doi.org/10.2478/pjmpe-2020-0018 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 155 - 160
Submitted on: Mar 31, 2020
Accepted on: Jul 14, 2020
Published on: Sep 29, 2020
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Aicha Mokdad, Sidi Mohammed El Amine Debbal, Fadia Meziani, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.