Have a personal or library account? Click to login
Investigation of imaging properties of novel contrast agents based on gold, silver and bismuth nanoparticles in spectral computed tomography using Monte Carlo simulation Cover

Investigation of imaging properties of novel contrast agents based on gold, silver and bismuth nanoparticles in spectral computed tomography using Monte Carlo simulation

Open Access
|Apr 2020

References

  1. [1] kavousi z, Karimian A, Jabbari I. Assessment of X-Ray Crosstalk in a Computed Tomography Scanner with Small Detector Elements Using Monte Carlo Method. Iranian j Med Phys. 2018;15(3):169-175.
  2. [2] Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol. 2015;6:256.10.3389/fphar.2015.00256463194626581654
  3. [3] Mesbahi A, Famouri F, Ahar MJ, et al. A study on the imaging characteristics of Gold nanoparticles as a contrast agent in X-ray computed tomography. Pol J Med Phys Eng. 2017;23(1):9-14.10.1515/pjmpe-2017-0003
  4. [4] Lee S, Choi YN, Kim HJ. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector. Phys Med Biol. 2014;59(18):5457-5482.10.1088/0031-9155/59/18/545725164993
  5. [5] van Ommen F, Bennink E, Vlassenbroek A, et al. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study. Med Phys. 2018;45(7):3031-3042.10.1002/mp.1295929749624
  6. [6] Kang S, Eom J, Kim B, Lee S. Evaluation of gold K-edge imaging using spectral computed tomography with a photon-counting detector: A Monte Carlo simulation study. Optik. 2017;140:253-260.10.1016/j.ijleo.2017.04.062
  7. [7] Kim J, Bar-Ness D, Si-Mohamed S, et al. Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep. 2018;8(1):12119.10.1038/s41598-018-30570-y609232430108247
  8. [8] Badea CT, Clark DP, Holbrook M, et al. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol. 2019;64(6):065007.10.1088/1361-6560/ab03e2660744030708357
  9. [9] Si-Mohamed S, Bar-Ness D, Sigovan M, et al. Multicolour imaging with spectral photon-counting CT: a phantom study. Eur Radiol Exp. 2018;2(1):34.10.1186/s41747-018-0063-4619140530327898
  10. [10] Tao S, Rajendran K, McCollough CH, Leng S. Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: An initial phantom study. Medical Physics. 2019;46(9):4105-4115.10.1002/mp.13668685753131215659
  11. [11] Lu G, Marsh S, Damet J, et al. Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements. Australas Phys Eng Sci Med. 2017;40(2):297-303.10.1007/s13246-017-0532-828220403
  12. [12] Jo BD, Park SJ, Kim HM, et al. Spectral computed tomography for quantitative decomposition of vulnerable plaques using a dual-energy technique: a Monte Carlo simulation study. Journal of Instrumentation. 2016;11(02):P02011.10.1088/1748-0221/11/02/P02011
  13. [13] Karunamuni R, Tsourkas A, Maidment AD. Exploring silver as a contrast agent for contrast-enhanced dual-energy X-ray breast imaging. Br J Radiol. 2014;87(1041):20140081.10.1259/bjr.20140081445314024998157
  14. [14] Sun IC, Eun DK, Na JH, et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry. 2009;15(48):13341-13347.10.1002/chem.20090234419902441
  15. [15] Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography contrast agents: Current status and future perspectives. Nanomedicine (London, England). 2012;7:257-269.10.2217/nnm.11.19022339135
  16. [16] Cole LE, Ross RD, Tilley JM, er al. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine (London, England). 2015;10(2):321-341.10.2217/nnm.14.17125600973
  17. [17] Jackson P, Geso M. Gold Nanoparticles as Contrast Media in Dual-energy Radiography: a Monte Carlo Study. Technical Proceedings of the 2010 NSTI Nanotechnology Conference & Expo - Nanotech 2010. Vol 3. pp. 77-80.
  18. [18] Hoseinnezhad M, Mahdavi M, Mahdavi SRM, Mahdavizade M. An investigation of the effect of gold nanoparticles with different concentrations on increasing absorbed dose: an empirical and simulation study. J Radioth Practice. 2018;18(2):191-197.10.1017/S1460396918000638
  19. [19] Rathnayake S, Mongan J, Torres AS, et al. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel. Contrast Media Mol Imaging. 2016;11(4):254-261.10.1002/cmmi.1687496912926892945
  20. [20] Ghadiri H, Ay MR, Shiran MB, et al. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging. Br J Radiol. 2013;86(1029):20130308.10.1259/bjr.20130308375540023934964
  21. [21] Cormode DP, Fayad ZA. Nanoparticle contrast agents for CT: Their potential and the challenges that lie ahead. Imaging in Medicine. 2011;3(3):263-266.10.2217/iim.11.17
  22. [22] Hayati H, Mesbahi A. Impact of photon spectra on the sensitivity of polymer gel dosimetry by X-ray computed tomography. Iranian J Med Phys. 2019;16(1):48-55.
  23. [23] Remy C, Lalonde A, Béliveau-Nadeau D, et al. Dosimetric impact of dual-energy CT tissue segmentation for low-energy prostate brachytherapy: a Monte Carlo study. Phys Med Biol. 2018;63(2):025013.10.1088/1361-6560/aaa30c29260727
  24. [24] Lalonde A, Simard M, Remy C, et al. The impact of dual- and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study. Phys Med Biol. 2018;63(19):195012.10.1088/1361-6560/aadf2a30183681
  25. [25] Eom J, Kim B, Kim W, Lee S. Evaluation of material decomposition for pulmonary function test in spectral computed tomography: A Monte Carlo simulation study. Optik. 2018;174:409-415.10.1016/j.ijleo.2018.08.093
  26. [26] Ehn S, Sellerer T, Mechlem K, et al. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model. Phys Med Biol. 2017;62(1):N1-N17.10.1088/1361-6560/aa4e5c27973355
  27. [27] Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes. Radiol Phys Technol. 2016;9(1):37-43.10.1007/s12194-015-0331-426205316
  28. [28] Nasirudin R, Penchev P, Mei K, et al. A Monte Carlo software bench for simulation of spectral k-edge CT imaging: Initial results. Physica Medica. 2015;31(4):398-405.10.1016/j.ejmp.2015.03.00325840620
  29. [29] Pelowitz DB: MCNPX user’s manual version (2.6.0).; Los Alamos National Laboratory. 2008.
  30. [30] Jo B, Im HS, Kim HJ, Son TJ. The potential of spectral-CT for material decomposition with gold-nanoparticle and iodine contrast. IFMBE Proceeding. 2015;51:22-25.10.1007/978-3-319-19387-8_6
  31. [31] Jakhmola A, Anton N, Vandamme T. Inorganic Nanoparticles Based Contrast Agents for X-ray Computed Tomography. Adv Healthc Mater. 2012;1(4):413-431.10.1002/adhm.20120003223184772
  32. [32] Brown AL, Naha PC, Benavides-Montes V, et al. Synthesis, X-ray Opacity, and Biological Compatibility of Ultra-High Payload Elemental Bismuth Nanoparticle X-ray Contrast Agents. Chemistry Mater. 2014;26(7):2266-2274.10.1021/cm500077z398573824803727
  33. [33] Hainfeld JF, O’Connor MJ, Dilmanian FA, et al. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Brit J Radiol. 2011;84(1002):526-533.10.1259/bjr/42612922347362921081567
  34. [34] Chuang Y-C, Hsia Y, Chu C-H, et al. Precision control of the large-scale green synthesis of biodegradable gold nanodandelions as potential radiotheranostics. Biomaterials Science. 2019;7(11):4720-4729.10.1039/C9BM00897G31495835
  35. [35] Li C-H, Kuo T, Su H-J, et al. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection. Scientific Reports. 2015;5:15675.10.1038/srep15675462347526507179
  36. [36] Dong YC, Hajfathalian M, Maidment PSN, et al. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Scientific Reports. 2019;9(1):14912.10.1038/s41598-019-50332-8679774631624285
  37. [37] Algethami M, Blencowe A, Feltis B, Geso M. Bismuth Sulfide Nanoparticles as a Complement to Traditional Iodinated Contrast Agents at Various X-Ray Computed Tomography Tube Potentials. J Nanomater Mol Nanotechnol. 2017;6(4).10.4172/2324-8777.1000222
DOI: https://doi.org/10.2478/pjmpe-2020-0003 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 21 - 29
Submitted on: Oct 2, 2019
Accepted on: Feb 18, 2020
Published on: Apr 3, 2020
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Maryam Sadeghian, Parisa Akhlaghi, Asghar Mesbahi, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.