Have a personal or library account? Click to login
Multi spectral classification and recognition of breast cancer and pneumonia Cover

Multi spectral classification and recognition of breast cancer and pneumonia

Open Access
|Apr 2020

References

  1. [1] Mayo Clinic Patient Care and Health Information. Pneumonia. https://www.mayoclinic.org/diseases-conditions/pneumonia/symptoms-causes/syc-20354204
  2. [2] Micalizzi DS, Maheswaran S. On the trail of invasive cells in breast cancer. Nature. 2018;554:308-309.10.1038/d41586-018-01634-w32094721
  3. [3] Mayo Clinic Patient Care and Health Information. Breast Cancer. https://www.mayoclinic.org/diseases-conditions/breast-cancer/symptoms-causes/syc-20352470
  4. [4] LeCun Y, Bengio Y. Convolutional Networks for Images, Speech and Time-Series. in: The handbook of brain theory and neural networks. MIT Press Cambridge; 1998.
  5. [5] Kakde A, Arora A, Sharma D. Novel Approach towards Optimal Classification using Multilayer Perceptron. Int J Res Eng IC Soc Sci. 2018;8(10):29-38.
  6. [6] Clevert DA, Unterthiner T, Hochreiter S. Fast and Accurate Deep Network Learning Exponential Linear Units (ELUs). International Conference on Learning Representations; 2016.
  7. [7] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. 2012. pp. 1097-1105.
  8. [8] Ramchoun H, Idrissi MAJ, Ghanou Y, Ettaouil M. Multilayer Perceptron: Architecture Optimization and Training. IJIMAI. 2016;4(1):26-30.10.9781/ijimai.2016.415
  9. [9] Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognition. 2018;77:354-377.10.1016/j.patcog.2017.10.013
  10. [10] Pedamonti D. Comparison of non-linear activation functions for deep neural networks on MNIST classification task. ArXiv. 2018;abs/1804.02763.
  11. [11] Kamilaris A, Prenafeta-Boldú FX. Deep Learning in Agriculture: A Survey. Computers and Electronics in Agriculture. 2018;147:70-90.10.1016/j.compag.2018.02.016
  12. [12] Fakoor F, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. ICML Workshop on the Role of Machine Learning in Transforming Healthcare; 2013.
  13. [13] Mills KI, Kohlmann, A, Williams PM, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of aml transformation of myelodysplastic syndrome. Blood. 2009;114(5):1063-1072.10.1182/blood-2008-10-18720319443663
  14. [14] Fujiwara T, Hiramatsu M, Isagawa T, et al. ASCL1-coexpression profiling but no single gene expression profiling defines lung adenocarcinomas of neuroendocrine nature with poor prognosis. Lung Cancer. 2012;75(1):119-125.10.1016/j.lungcan.2011.05.02821737174
  15. [15] Woodward WA, Krishnamurthy S, Yamauchi H, et al. Genomic and expression analysis of microdissected inflammatory breast cancer. Breast Cancer Res Treat. 2013;138(3):761-772.10.1007/s10549-013-2501-6367782623568481
  16. [16] Klein HU, Ruckert C, Kohlmann A, et al. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures. BMC Bioinformatics. 2009;10:422.10.1186/1471-2105-10-422280385820003504
  17. [17] Cheok MH, Yang W, Pui CH, et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet. 2003;34(1):85-90.10.1038/ng115112704389
  18. [18] Yagi T, Morimoto A, Eguchi M, et al. Identification of a gene expression signature associated with pediatric AML prognosis. Blood. 2003;102(5):1849-1856.10.1182/blood-2003-02-057812738660
  19. [19] Wang Y, Klijn JGM, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365(9460):617-679.10.1016/S0140-6736(05)17947-1
  20. [20] Gashaw I, Grümmer R, Klein-Hitpass L, et al. Gene signatures of testicular seminoma with emphasis on expression of ets variant gene 4. Cell Mol Life Sci. 2005;62(19-20):2359-2368.10.1007/s00018-005-5250-9
  21. [21] Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572-577.10.1016/S0140-6736(02)07746-2
  22. [22] Alon U, Barkai N, Notterman DA, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad USA. 1999;92(12):6745-6750.10.1073/pnas.96.12.6745
  23. [23] Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. 2002;415(6870):436-442.10.1038/415436a
  24. [24] Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. 2002;1(2):203-20910.1016/S1535-6108(02)00030-2
  25. [25] Verhaak RG, Wouters BJ, Erpelinck CA, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. 2009;94(1):131-134.10.3324/haematol.13299262540718838472
  26. [26] Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med. 2004;34(2):113-127.10.1016/j.artmed.2004.07.00215894176
  27. [27] Cruz-Roa A, Basavanhally A, González F, et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Proc SPIE 9041, Medical Imaging 2014: Digital Pathology: 904103.10.1117/12.2043872
  28. [28] Kermany DS, Khang K, Goldbaum MH. Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification. doi: 10.17632/rscbjbr9sj.2
DOI: https://doi.org/10.2478/pjmpe-2020-0001 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 1 - 9
Submitted on: Jun 28, 2019
Accepted on: Oct 15, 2019
Published on: Apr 3, 2020
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Aditya Kakde, Nitin Arora, Durgansh Sharma, Subhash Chander Sharma, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.