Have a personal or library account? Click to login
Enhanced CAE system for detection of exudates and diagnosis of diabetic retinopathy stages in fundus retinal images using soft computing techniques Cover

Enhanced CAE system for detection of exudates and diagnosis of diabetic retinopathy stages in fundus retinal images using soft computing techniques

By: Sathya D Janaki and  K Geetha  
Open Access
|Jun 2019

References

  1. [1] Lee N, Laine AF, Smith RT. A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 4965-4968. IEEE, 2007.10.1109/IEMBS.2007.4353455
  2. [2] Sopharak A, Dailey NM, Uyyanonvara B, et al. Machine learning approach to automatic exudate detection in retinal images from diabetic patients. Journal of Modern Optics. 2010;57(2):124-135.10.1080/09500340903118517
  3. [3] Giancardo L, Meriaudeau F, Karnowski TP, et al. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis. 2012;16(1):216-226.10.1016/j.media.2011.07.00421865074
  4. [4] Geetha Ramani R, Balasubramanian L, Jacob SG. Automatic Prediction of Diabetic Retinopathy and Glaucoma through Retinal Image Analysis and Data Mining Techniques. 2012 International Conference on Machine Vision and Image Processing (MVIP), Taipei, 2012, pp. 149-152. IEEE, 201.10.1109/MVIP.2012.6428782
  5. [5] Wagle S, Mangai JA, Kumar VS. An Improved Medical Image Classification Model using Data Mining Techniques. GCC Conference and exhibition, November 17-20, Doha, Qatar. IEEE, 2013.10.1109/IEEEGCC.2013.6705760
  6. [6] Hatanaka Y, Muramatsu C, Sawada A, et al. Glaucoma Risk Assessment Based on Clinical Data and Automated Nerve Fiber Layer Defects Detection. 34th Annual International Conference of the IEEE EMBS San Diego, California USA, 28 August - 1 September, 2012.10.1109/EMBC.2012.634735223367287
  7. [7] Osareh A, Shadgar B, Markha R. A Computational Intelligence Based Approach for Detection of Exudates in Diabetic Retinopathy Images. IEEE Transactions on Information Technology in Biomedicine, 2009;13(4):535-545.10.1109/TITB.2008.200749319586814
  8. [8] Youssef D, Solouma N, El-dib A, et al. New Feature-Based Detection of Blood Vessels and Exudates in Color Fundus Images. 2010 2nd International Conference Image Processing Theory Tools and Applications (IPTA), Paris. pp. 294-299. 2010.10.1109/IPTA.2010.5586752
  9. [9] Zhang X, Thibault G, Decenciere E, et al. A. Exudate Detection in Color Retinal Images for Mass Screening of Diabetic Retinopathy. Medical Image Analysis. 2014;18(7):1026-1043.10.1016/j.media.2014.05.00424972380
  10. [10] Mansour RF, Abdelrahim EM, Al-Johani AS. Identification of Diabetic Retinal Exudates in Digital Color Images Using Support Vector Machine. Journal of Intelligent Learning Systems and Applications. 2013;5:135-142.10.4236/jilsa.2013.53015
  11. [11] Sreng S, Takada J, Maneerat N, et al. Automatic exudate extraction for early detection of diabetic retinopathy. Proceedings of the International Conference on Information Technology and Electrical Engineering, Oct. 7-8, IEEE Xplore Press, Yogyakarta, pp: 31-35, 2013.10.1109/ICITEED.2013.6676206
  12. [12] Franklin SW, Rajan SE. Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Processing. 2014;8(1):601-609.10.1049/iet-ipr.2013.0565
  13. [13] Roychowdhury S, Koozekanani DD, Parhi KK. DREAM: Diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Informat. 2014;18(5):1717-172810.1109/JBHI.2013.229463525192577
  14. [14] Liu Q, Zou B, Chen J, et al. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Comput Med Imag Graph. 2017;55:78-86.10.1016/j.compmedimag.2016.09.00127665058
  15. [15] Caramihale T, Popescu D, Ichim L. Interconnected neural networks based on voting scheme and localdetectors for retinal image analysis and diagnosis. In Proceedings of the Image Analysis and Processing Conference - ICIAP 2017, Catania, Italy, Battiato, 11–15 September 2017; Gallo G, Schettini R, Stanco F (Eds). Lecture Notes in Computer Science. 2017;10485:753-764.
  16. [16] Raja SS, Vasuki S. Screening diabetic retinopathy in developing countries using retinal images. Appl Med Inform. 2015;36(1):13-22.10.1155/2015/419279
  17. [17] Sathya J, Geetha K. Automatic segmentation of lesion from breast DCE-MR image using artificial fish swarm optimization algorithm. Pol J Med Phys Eng. 2017;23(2):29-36.10.1515/pjmpe-2017-0006
  18. [18] Gibbs P, Turnbull LW. Textural analysis of contrast enhanced MR images of the breast. Magn Reson Med. 2003;50(1):92-98.10.1002/mrm.10496
  19. [19] Agner SC, Soman S, Libfeld E, et al. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J Digit Imaging. 2011;24(3):446-463.10.1007/s10278-010-9298-1
  20. [20] Haralick RM, Shanmugam K. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics. 1973;3(6):610-621.10.1109/TSMC.1973.4309314
  21. [21] Vickers AJ. Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data. BMC Med Res Methodol. 2005;35(5):1-12.10.1186/1471-2288-5-35
  22. [22] Haury AC, Gestraud P, Vert JP. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PloS One. 2011;6(12):e28210.10.1371/journal.pone.0028210
  23. [23] Foody GM. Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sensing of Environment. 2009;113(8):1658-1663.10.1016/j.rse.2009.03.014
  24. [24] Liu H, Li J, Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform. 2002;13:51-60.
  25. [25] Lisboa PJ. A review of evidence of health benefits from artificial neural networks in medical intervention. Neural Networks. 2002;15(1):11-39.10.1016/S0893-6080(01)00111-3
  26. [26] Levman J, Leung T, Causer P, et al. Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines. IEEE Transaction on Medical Imaging. 2008;27(5):688-696.10.1109/TMI.2008.916959289101218450541
  27. [27] Mahendran G, Dhanasekaran R, Narmadha Devi KN. Identification of Exudates for Diabetic Retinopathy based on Morphological Process and PNN Classifier. International Conference on Communication and Signal Processing, April 3-5, 2014, India10.1109/ICCSP.2014.6950022
DOI: https://doi.org/10.2478/pjmpe-2019-0018 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 131 - 139
Submitted on: Jun 28, 2018
Accepted on: Mar 14, 2019
Published on: Jun 18, 2019
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Sathya D Janaki, K Geetha, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.