Have a personal or library account? Click to login
Effect of Changing Phantom Thickness on Helical Radiotherapy Plan: Dosimetric Analysis Cover

Effect of Changing Phantom Thickness on Helical Radiotherapy Plan: Dosimetric Analysis

By: Sibel Karaca  
Open Access
|Jun 2019

References

  1. [1] Dubben HH, Thames HD, Beck-Bornholdt HP. Tumor volume: a basic and specific response predictor in radiotherapy. Radiother Oncol. 1998;47(2):167-74.10.1016/S0167-8140(97)00215-6
  2. [2] Zhao L, Wan Q, Zhou Y, et al. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother Oncol. 2011;98(1):23-7.10.1016/j.radonc.2010.10.00921040992
  3. [3] Joon-Young J, Dae Hyun K, Cheon Woong C, et al. Analysis of Changes in Skin Dose During Weight Loss when Tomotherapy of Nasopharynx Cancer. Journal of the Korean Magnetics Society. 2016;26(3):99-104.10.4283/JKMS.2016.26.3.099
  4. [4] Yan D, Lockman D, Martinez A, et al. Computed tomography guided management of interfractional patient variation. Semin Radiat Oncol. 2005;15(3):168-79.10.1016/j.semradonc.2005.01.00715983942
  5. [5] Piotrowski T, Kazmierska J, Sokołowski A, et al. Impact of the spinal cord position uncertainty on the dose received during head and neck helical tomotherapy. J Med Imaging Radiat Oncol. 2013;57(4):503-511.10.1111/1754-9485.1205623870352
  6. [6] Piotrowski T, Ryczkowski A, Adamczyk M, Jodda A. Estimation of the planning organ at risk volume for the lenses during radiation therapy for nasal cavity and paranasal sinus cancer. J Med Imaging Radiat Oncol. 2015;59(6):743-750.10.1111/1754-9485.1234426238510
  7. [7] Han C, Chen YJ, Liu A, et al.. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(4):1256-1262.10.1016/j.ijrobp.2007.10.06718234431
  8. [8] Nishi T, Nishimura Y, Shibata T, et al. Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol. 2013;106(1):85-89.10.1016/j.radonc.2012.11.00523337058
  9. [9] Woodford C, Yartsev S, Dar AR, et al. Adaptive radiotherapy planning on decreasing gross tumor volumes as seen on megavoltage computed tomography images. Int J Radiat Oncol Biol Phys. 2007;69(4):1316-22.10.1016/j.ijrobp.2007.07.236917967322
  10. [10] Chen C, Fei Z, Chen L, et al. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with Intensity-Modulated Radiation Therapy? Med Dosim. 2014;39(1):34-37.10.1016/j.meddos.2013.09.00224140235
  11. [11] Beltran M, Ramos M, Rovira JJ, et al. Dose variations in tumor volumes and organs at risk during IMRT for head and neck cancer. J Appl Clin Med Phys. 2012;13(6):3723.10.1120/jacmp.v13i6.3723571854923149770
  12. [12] Bhide SA, Davies M, Burke K, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: A prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76(5):1360-8.10.1016/j.ijrobp.2009.04.00520338474
  13. [13] Tariq I, Chen T, Kirkby NF, Jena R. Modelling and Bayesian adaptive prediction of individual patients’ tumour volume change during radiotherapy. Phys Med Biol. 2016;61(5):2145-61.10.1088/0031-9155/61/5/214526907478
  14. [14] Fenwick JD, Tomé WA, Kissick MW, Mackie TR. Modelling simple helically delivered dose distributions. Phys Med Biol. 2005; 50(7):1505-17.10.1088/0031-9155/50/7/01315798340
  15. [15] Schirm M, Yartsev S, Bauman G, et al. Consistency check of planned adaptive option on helical tomotherapy. Technol Cancer Res Treat. 2008;7(6):425-32.10.1177/15330346080070060319044321
  16. [16] Sen A, West MK. Commissioning experience and quality assurance of helical tomotherapy machines. J Med Phys. 2009;34(4):194-9.10.4103/0971-6203.56078280714020098548
  17. [17] Olivera GH, Shepard DM, Ruchala K et al.Tomotherapy. Van Dyk J, ed. The Modern Technology of Radiation Oncology. Madison, WI: Medical Physics Publishing, 1999:521-87.
  18. [18] Mackie TR. History of tomotherapy. Phys Med Biol. 2006;51(13):R427-53.10.1088/0031-9155/51/13/R2416790916
  19. [19] Welsh JS, Lock M, Harari PM, et al. Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy. Tech Cancer Res Treat. 2006;5:465-479.10.1177/15330346060050050316981789
  20. [20] Piotrowski T, Kaczmarek K, Bajon T, et al. Evaluation of Image-Guidance Strategies for Prostate Cancer. Technol Cancer Res Treat. 2014;13(6):583-591.10.1017/S1460396914000193
  21. [21] Yan D. Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol. 2010;20(2):79-83.10.1016/j.semradonc.2009.11.00120219545
  22. [22] Thörnqvist S, Hysing LB, Tuomikoski L, et al. Adaptive radiotherapy strategies for pelvic tumors a systematic review ofclinical implementations. Acta Oncol.2016 Aug;55(8):943-58.10.3109/0284186X.2016.115673827055486
  23. [23] Surucu M, Shah KK, Roeske JC, et al. Adaptive radiotherapy for head and neck cancer implications for clinical and dosimetry outcomes. Technol Cancer Res Treat. 2017;16(2):218-223.10.1177/1533034616662165561603327502958
  24. [24] Yadav P, Tolakanahalli R, Rong Y, Paliwal BR. The effect and stability of MVCT images on adaptive TomoTherapy. J Appl Clin Med Phys. 2010;11(4):3229.10.1120/jacmp.v11i4.3229572039721081878
  25. [25] Meeks SL, Harmon JF Jr, Langen KM, et al. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys. 2005;32(8):2673-81.10.1118/1.199028916193798
  26. [26] Welsh JS, Lock M, Harari PM, et al. Clinical Implementation of Adaptive Helical Tomotherapy: A Unique Approach to Image-Guided Intensity Modulated Radiotherapy Technology in Cancer Research and Treatment. Technol Cancer ResTreat. 2006;5(5):465-79.10.1177/15330346060050050316981789
  27. [27] Yan D, Liang J. Expected treatment dose construction and adaptive inverseplanning optimization: implementation for offline head and neck cancer adaptive radiotherapy. Med Phys. 2013;40(2):021719.10.1118/1.478865923387742
  28. [28] Schwartz DL. Current progress in adaptive radiation therapy for head and neckcancer. Curr Oncol Rep. 2012;14(2):139-47.10.1007/s11912-012-0221-422328127
  29. [29] van der Horst A, Houweling AC, van Tienhoven G, et al. Dosimetric effects of anatomical changes during fractionated photon radiation therapy in pancreatic cancer patients. J Appl Clin Med Phys. 2017;18(6):142-151.10.1002/acm2.12199568992028980445
  30. [30] Ren G, Xu S-P, Du L, et al. Actual Anatomical and Dosimetric Changes of Parotid Glands in Nasopharyngeal Carcinoma Patients during Intensity Modulated Radiation Therapy. BioMed Res Int. 2015;2015:670327.10.1155/2015/670327435245725793202
  31. [31] Duma MN, Kampfer S, Schuster T, et al. Adaptive radiotherapy for soft tissue changes during helical tomotherapy for head and neck cancer. Strahlenther Onkol. 2012;188(3):243-7.10.1007/s00066-011-0041-822294198
  32. [32] Ashburner MJ, Tudor S. The optimization of superficial planning target volumes (PTVs) with helical tomotherapy. J Appl Clin Med Phys. 2014;15(6):4560.10.1120/jacmp.v15i6.4560
  33. [33] Chow JCL, Jiang R. Comparison of dosimetric variation between prostate IMRT and VMAT due to patient’s weight loss: Patient and phantom study. Rep Pract Oncol Radiother. 2013;18(5):272-278.10.1016/j.rpor.2013.05.003386315924416564
  34. [34] Piotrowski T, Gintowt K, Jodda A, et al. Impact of the intra- and inter-observer variability in the delineation of parotid glands on the dose calculation during head and neck helical tomotherapy. Technol Cancer Res Treat. 2015;14(4):467-474.10.1177/1533034614600278463990626269608
  35. [35] Jang S, Watchman C. SU-FF-T-596: Dosimetric Impact of Anatomic Changes Due to Patient Weight Loss On TomoTherapy Plan. Med Phys. 2009;36:2661–2662.10.1118/1.3182094
  36. [36] Pair ML, Du W, Rojas HD, et al.. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer. Med Dosim. 2013;38(3):251-4.10.1016/j.meddos.2013.02.00423540491
  37. [37] Choi HS, Jo GS, Chae JP, et al. Defining the Optimal Time of Adaptive Replanning in Prostate Cancer Patients with Weight Change during Volumetric Arc Radiotherapy: A Dosimetric and Mathematical Analysis Using the Gamma Index. Computational and Mathematical Methods in Medicine. 2017;2017.10.1155/2017/4149591574832329403539
DOI: https://doi.org/10.2478/pjmpe-2019-0016 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 121 - 126
Submitted on: Nov 1, 2018
Accepted on: Apr 3, 2019
Published on: Jun 18, 2019
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Sibel Karaca, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.