Have a personal or library account? Click to login
A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds Cover

A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds

Open Access
|Jun 2019

References

  1. [1] Yang R, Wang J, Zhang H. Dosimetric Comparison of Permanent Prostate Brachytherapy Plans Utilizing Cs-131, I-125 and Pd-103 Seeds. Cancer Biother Radiopharm. 2009;24(6):701-5.10.1089/cbr.2009.064820025550
  2. [2] Ververs J, Anscher M, Rivard M, Todor D. A Treatment Planning Feasibility Study for Prostate LDR Brachytherapy Treatments Using the New 103-Pd CivaString Source. Comparison with Clinical Cases Using the TheraSeed Model 200 103-Pd Source. Med Phys. 2013;40(6):310.10.1118/1.4814888
  3. [3] Rivard MJ, Reed JL, DeWerd LA. 103Pd strings: Monte Carlo assessment of a new approach to brachytherapy source design. Med Phys 2014;41(1):011716.10.1118/1.485601524387508
  4. [4] Chandran PR, Thomas RT. Chapter 14 - Gold Nanoparticles in Cancer Drug Delivery. In: Ninan STG, editor. Nanotechnology Applications for Tissue Engineering.Oxford: William Andrew Publishing; 2015; 221-37.10.1016/B978-0-323-32889-0.00014-5
  5. [5] Gilles M, Brun E, Sicard-Roselli C. Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation. Colloids Surf B: Biointerfaces 2014;123:770-7.10.1016/j.colsurfb.2014.10.02825454667
  6. [6] Xie WZ, Friedland WF, Li WB, et al. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol. 2015;60(16):6195-212.10.1088/0031-9155/60/16/619526226203
  7. [7] Yao XF, Huang CF, Chen XF, et al. Chemical Radiosensitivity of DNA Induced by Gold Nanoparticles. J Biomed Nanotechnol. 2015;11(3):478-85.10.1166/jbn.2015.192226307830
  8. [8] Alexis F, Rhee JW, Richie JP, et al. New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations. 2008;26(1):74-85.10.1016/j.urolonc.2007.03.01718190835
  9. [9] Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release 2012;162(1):45-55.10.1016/j.jconrel.2012.05.05122698943
  10. [10] Geso M. Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine: Nanotechnology, Biology and Medicine 2013;9(2):302-3.10.1016/j.nano.2012.11.00323220219
  11. [11] Joh DY, Kao GD, Murty S, et al. Theranostic Gold Nanoparticles Modified for Durable Systemic Circulation Effectively and Safely Enhance the Radiation Therapy of Human Sarcoma Cells and Tumors. Transl Oncol. 2013;6(6):722-732.10.1593/tlo.13433389070724466375
  12. [12] Nazir S, Hussain T, Ayub A, et al. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomedicine: Nanotechnology, Biology and Medicine. 2014;10(1):19-34.10.1016/j.nano.2013.07.00123871761
  13. [13] Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Revi. 2014;6666:2-25.10.1016/j.addr.2013.11.009421925424270007
  14. [14] Brede C, Labhasetwar V. Applications of Nanoparticles in the Detection and Treatment of Kidney Diseases. Adv Chronic Kidney Dis. 2013;20(6):454-65.10.1053/j.ackd.2013.07.006382425924206598
  15. [15] Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv Drug Deliv Rev 2008;60(15):1627-37.10.1016/j.addr.2008.08.00318930086
  16. [16] Etame AB, Diaz RJ, O’Reilly MA, et al. Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology and Medicine. 2012;8(7):1133-42.10.1016/j.nano.2012.02.003410153722349099
  17. [17] Feng G, Kong B, Xing J, Chen J. Enhancing multimodality functional and molecular imaging using glucose-coated gold nanoparticles. Clin Radiol. 2014;69(11):1105-11.10.1016/j.crad.2014.05.11225023059
  18. [18] Gaca S, Reichert S, Multhoff G, et al. Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J Control Rel. 2013;28;172(1):201-6.10.1016/j.jconrel.2013.08.02024008150
  19. [19] Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev. 2014;76:2-20.10.1016/j.addr.2014.07.011416974425086372
  20. [20] Lin Y, McMahon SJ, Scarpelli M, et al. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 2014;59(24):7675-89.10.1088/0031-9155/59/24/767525415297
  21. [21] Asadi S, Vaez-Zadeh M, Vahidian M, et al. Ocular brachytherapy dosimetry for 103Pd and 125I in the presence of gold nanoparticles: a Monte Carlo study. J Appl Clin Med Phys. 2016;17(3):90-99.10.1120/jacmp.v17i3.5945569093327167265
  22. [22] Khosravi H, Hashemi B, Mahdavi SR, Hejazi P. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method. J Biomed Phys Eng. 2015;5(1):3-14.
  23. [23] Sinha N, Cifter G, Sajo E, et al. Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters. Int J Radiat Oncol Biol Phys. 2015;91(2):385-92.10.1016/j.ijrobp.2014.10.001431271525482302
  24. [24] Reed JL, Rivard MJ, Micka JA, et al. Experimental and Monte Carlo dosimetric characterization of a 1 cm 103Pd brachytherapy source. Brachytherapy. 2014;13(6):657-67.10.1016/j.brachy.2014.04.00124880585
  25. [25] P Saidi, M Sadeghi, M Enferadi, G Aslani. Investigation of palladium-103 production and IR07-103Pd brachytherapy seed preparation. Ann Nucl Energy. 2011;38(1):2168-73.10.1016/j.anucene.2011.06.018
  26. [26] Butler WM, Merrick GS. Focal prostate brachytherapy with 103Pd seeds. Phys Med. 2016;32(3):459-64.10.1016/j.ejmp.2016.03.01227053451
  27. [27] Li ZY, Gao HB, Deng XS, et al. Preparation of 103Pd brachytherapy seeds by electroless plating of 103Pd onto carbon bars. Appl Radiat Isot. 2015;103:128-30.10.1016/j.apradiso.2015.05.02026092353
  28. [28] Saidi P, Sadeghi M, Shirazi A, Tenreiro C. Dosimetric parameters of the new design 103Pd brachytherapy source based on Monte Carlo study. Phys Med. 2012;28(1):13-8.10.1016/j.ejmp.2010.12.00521251862
  29. [29] National Laboratory Report No. BNL.NCS-17541. Cross section Evaluation Working Group. ENDF/B-VI summary documentation (ENDF-201). December 2000: National Nuclear Data Center; 2000.
  30. [30] Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM task group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633-74.10.1118/1.164604015070264
  31. [31] Raisali G, Ghonchehnazi MG, Shokrani P, Sadeghi M. Monte Carlo and experimental characterization of the first AMIRS 103Pd brachytherapy source. Appl Radiat Isot 2008;66(12):1856-60.10.1016/j.apradiso.2008.06.00718657981
  32. [32] Kim YJ, Park JH, Yun IH, Kim YS. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer. Onco Targets Ther. 2016;9:1319-25.10.2147/OTT.S96646479050727022287
  33. [33] Xie WZ, Friedland WF, Li WB, et al. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol 2015; 21;60(16):6195-212.10.1088/0031-9155/60/16/619526226203
  34. [34] Yang CJ, Chithrani DB. Nuclear Targeting of Gold Nanoparticles for Improved Therapeutics. Curr Top Med Chem. 2016;16(3):271-80.10.2174/1568026615666150701115012
  35. [35] Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B Biointerfaces. 2009;7(1)2:128-34.10.1016/j.colsurfb.2009.03.02519414242
  36. [36] Brun E, Duchambon P, Blouquit Y, et al. Gold nanoparticles enhance the X-ray-induced degradation of human centrin 2 protein. Radiat Phys Chem. 2009;78(3):177-83.10.1016/j.radphyschem.2008.11.003
  37. [37] Feng G, Kong B, Xing J, Chen J. Enhancing multimodality functional and molecular imaging using glucose-coated gold nanoparticles. Clin Radiol. 2014;69(11):1105-11.10.1016/j.crad.2014.05.11225023059
  38. [38] Ghorbani M, Mehrpouyan M, Davenport D, Ahmadi Moghaddas T. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources. Radiol Oncol. 2016;50(2):238-46.10.1515/raon-2016-0019485296027247558
  39. [39] Reynoso FJ, Manohar N, Krishnan S, Cho SH. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy. Med Phys. 2014;41(10):101709.10.1118/1.489599125281948
  40. [40] Sinha N, Cifter G, Sajo E, et al. Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters. Int J Radiat Oncol Biol Phys. 2015;91(2):385-92.10.1016/j.ijrobp.2014.10.001431271525482302
DOI: https://doi.org/10.2478/pjmpe-2019-0012 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 87 - 92
Submitted on: Sep 29, 2018
Accepted on: Mar 7, 2019
Published on: Jun 18, 2019
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Amir Ghasemi Jangjoo, Hosein Ghiasi, Asghar Mesbahi, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.