Have a personal or library account? Click to login
Study the Anti-MUC1 antibody-based iron oxide nanoparticles on three-dimension spheroid and breast cancer (MCF-7) cell imaging Cover

Study the Anti-MUC1 antibody-based iron oxide nanoparticles on three-dimension spheroid and breast cancer (MCF-7) cell imaging

Open Access
|Jun 2019

References

  1. [1] de Rooij M, Hamoen EH, Fütterer JJ, et al., Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. American Journal of Roentgenology. 2014;202(2):343-351.10.2214/AJR.13.1104624450675
  2. [2] Shahbazi-Gahrouei D. Novel MR imaging contrast agents for cancer detection. Journal of Research in Medical Sciences. 2009;14(3):141-147.
  3. [3] Shahbazi-Gahrouei D, Rizvi S, Williams M, Allen BJ. In vitro studies of gadolinium-DTPA conjugated with monoclonal antibodies as cancer-specific magnetic resonance imaging contrast agents. Australasian Physics & Engineering Sciences in Medicine. 2002;25(1):31-38.10.1007/BF0317837212049473
  4. [4] Padmanabhan P, Kumar A, Kumar S, et al. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia. 2016;41:1-16.10.1016/j.actbio.2016.06.00327265153
  5. [5] Shahbazi-Gahrouei D, Williams M, Rizvi S, Allen BJ. In vivo studies of Gd-DTPA-monoclonal antibody and gd-porphyrins: Potential magnetic resonance imaging contrast agents for melanoma. Journal of Magnetic Resonance Imaging. 2001;14(2):169-174.10.1002/jmri.116811477676
  6. [6] Abdolahi M, Shahbazi-Gahrouei D, Laurent S, et al. Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer. Contrast Media and Molecular Imaging, 2013;8(2):175-184.10.1002/cmmi.151423281290
  7. [7] Mirzaei M, Mohagheghi M, Shahbazi-Gahrouei D, Khatami A. Novel nanosized Gd3+-ALGD-G2-C595: in vivo dual selective MUC-1 positive tumor molecular MR imaging and therapeutic agent. J Nanomed Nanotechnol. 2012;3(7):147-152.10.4172/2157-7439.1000147
  8. [8] Shahbazi-Gahrouei D, Williams M, Allen B. In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength. Australasian Radiology. 2001;45(3):298-304.10.1046/j.1440-1673.2001.00924.x11531752
  9. [9] Shahbazi-Gahrouei D, Abdolahi M. A novel method for quantitative analysis of anti-MUC1 expressing ovarian cancer cell surface based on magnetic cell separation. Journal of Medical Sciences. 2012;12(8):256-266.10.3923/jms.2012.256.266
  10. [10] Shahbazi-Gahrouei D, Abdolahi M. Superparamagnetic iron oxide-C595: Potential MR imaging contrast agents for ovarian cancer detection. Journal of Medical Physics. 2013;38(4):198-204.10.4103/0971-6203.121198395900024672155
  11. [11] Shahbazi-Gahrouei D, Abdolahi M. Detection of MUC1-expressing ovarian cancer by C595 monoclonal antibody-conjugated SPIONs using MR imaging. The Scientific World Journal. 2013;2013:609151.10.1155/2013/609151380649024194685
  12. [12] Ghasemian Z, Shahbazi-Gahrouei D, Manouchehri S. Cobalt zinc ferrite nanoparticles as a potential magnetic resonance imaging agent: An in vitro study. Avicenna Journal of Medical Biotechnology. 2015;7(2):64-68.
  13. [13] Zahraei M, Marciello M, Lazaro-Carrillo A, et al. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. Nanotechnology. 2016;27(25):255702.10.1088/0957-4484/27/25/25570227184442
  14. [14] Zahraei M, Monshi A, del Puerto Morales M, et al. Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite. Journal of Magnetism and Magnetic Materials. 2015;393:429-436.10.1016/j.jmmm.2015.06.006
  15. [15] Hattrup L, Gendler J. MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Research. 2006;8(4):R37.10.1186/bcr1515177946016846534
  16. [16] Wang L, Ma J, Liu F, et al. Expression of MUC1 in primary and metastatic human epithelial ovarian cancer and its therapeutic significance. Gynecologic Oncology. 2007;105(3):695-702.10.1016/j.ygyno.2007.02.00417368732
  17. [17] Boult K, Borri M, Jury A, et al. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR in Biomedicine. 2016;29(11):1608-1617.10.1002/nbm.3594508256127671990
  18. [18] Danhier P, Magat J, Levêque P, et al. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. NMR in Biomedicine. 2015;28(3):367-375.10.1002/nbm.325925611487
  19. [19] Estelrich J, Sánchez-Martín J, Busquets A. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International Journal of Nanomedicine. 2015;10:1727-1741.10.2147/IJN.S76501
  20. [20] Seyfer P, Pagenstcher A, Mandic R, et al. Cancer and inflammation: Differentiation by USPIO-enhanced MR imaging. Journal of Magnetic Resonance Imaging. 2014;39(3):665-672.10.1002/jmri.2420023723131
  21. [21] Neuwelt A, Sidhu N, Hu C, et al. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. American Journal of Roentgenology. 2015;204(3):W302-W313.10.2214/AJR.14.12733439503225714316
  22. [22] Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. International Journal of Pharmaceutics. 2015;496(2):191-218.10.1016/j.ijpharm.2015.10.05826520409
  23. [23] Vidavsky N, Kunitake A, Chiou E, et al. Studying biomineralization pathways in a 3D culture model of breast cancer microcalcifications. Biomaterials. 2018;179:71-84.10.1016/j.biomaterials.2018.06.030674770429980076
  24. [24] Talari S, Raza A, Rehman S, Rehman IU. Analyzing normal proliferating, hypoxic and necrotic regions of T-47D human breast cancer spheroids using Raman spectroscopy. Applied Spectroscopy Reviews. 2017;52(10):909-924.10.1080/05704928.2017.1363053
  25. [25] Khaniabadi M, Majik AMSA; Asif M, et al. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles. Journal of Physics: Conference Series. 2017;851:012014.10.1088/1742-6596/851/1/012014
  26. [26] Khaniabadi M, Shahbazi-Gahrouei D, Suhaimi M, et al. In vitro study of SPIONs-C595 as molecular imaging probe for specific breast cancer (MCF-7) cells detection. Iranian Biomedical Journal. 2017;21(6):360-368.
  27. [27] Khaniabadi M, Shahbazi-Gahrouei D, Jafaar S, et al. Magnetic iron oxide nanoparticles as T2 MR imaging contrast agent for detection of breast cancer (MCF-7) cell. Avicenna Journal of Medical Biotechnology. 2017;9(4):181-188.
  28. [28] Jafari F, Khadeer B, Iqbal A, et al. Increased aqueous solubility and proapoptotic activity of potassium koetjapate against human colorectal cancer cells. Journal of Pharmacy and Pharmacology. 2014;66(10):1394-1409.10.1111/jphp.1227225039905
  29. [29] Funovics A, Kapeller B, Hoeller C, et al. MR imaging of the her2/neu and 9.2. 27 tumor antigens using immunospecific contrast agents. Magnetic Resonance Imaging. 2004;22(6):843-850.10.1016/j.mri.2004.01.05015234453
  30. [30] Oghabian M, Jeddi-Tehrani M, Zolfaghari A, et al. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. Journal of Nanoscience and Nanotechnology. 2011;11(6):5340-5344.10.1166/jnn.2011.377521770186
  31. [31] Arancibia S, Barrientos A, Torrejón J, et al. Copper oxide nanoparticles recruit macrophages and modulate nitric oxide, proinflammatory cytokines and PGE2 production through arginase activation. Nanomedicine. 2016;11(10):1237-1251.10.2217/nnm.16.3927079258
  32. [32] Zhang J, Ring L, Hurley R, et al. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magnetic Resonance in Medicine. 2017;78(2):702-712.10.1002/mrm.26394536608927667655
  33. [33] Rodríguez E, Simoes V, Roig A, et al. An iron-based T 1 contrast agent made of iron-phosphate complexes: In vitro and in vivo studies. Magnetic Resonance Materials in Physics, Biology and Medicine. 2007;20(1):27-37.10.1007/s10334-006-0066-717268782
  34. [34] Callaghan F, Mohammadi S, Weiskopf N. Synthetic quantitative MRI through relaxometry modelling. NMR in Biomedicine. 2016;29(12):1729-1738.10.1002/nbm.3658513208627753154
DOI: https://doi.org/10.2478/pjmpe-2019-0010 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 69 - 77
Submitted on: Dec 28, 2018
Accepted on: Mar 26, 2019
Published on: Jun 18, 2019
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Pegah Moradi Khaniabadi, Daryoush Shahbazi-Gahrouei, Amin Malik Shah Abdul Majid, Bita Moradi Khaniabadi, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.