Have a personal or library account? Click to login
Comparative study between Acuros XB algorithm and Anisotropic Analytical Algorithm in the case of heterogeneity for the treatment of lung cancer Cover

Comparative study between Acuros XB algorithm and Anisotropic Analytical Algorithm in the case of heterogeneity for the treatment of lung cancer

Open Access
|Oct 2018

References

  1. [1] Clarkson JR. A note on depth doses in fields of irregular shape. Br J Radiol. 1941;14(164):265-268.10.1259/0007-1285-14-164-265
  2. [2] Cunningham JR. Scatter-air ratios. Phys Med Biol.1972;17(1):42-51.10.1088/0031-9155/17/1/0055071500
  3. [3] Khan FM, Levitt SH, Moore VC, Jones TK Jr. Computer and approximation methods of calculating depth dose in irregularly shaped fields. Radiology. 1973;106(2):433-436.10.1148/106.2.4334684488
  4. [4] Sontag MR, Cunningham JR. The equivalent tissue-air ratio method for making absorbed dose calculations in a heterogeneous medium. Radiology. 1978;129(3):787-794.10.1148/129.3.787725060
  5. [5] Webb S, Fox RA. Verification by Monte Carlo methods of a power law tissue-air ratio algorithm for inhomogeneity corrections in photon beam dose calculations. Phys Med Biol. 1980;25(2):225-240.10.1088/0031-9155/25/2/0037384209
  6. [6] Papanikolaou N, Battista J, Boyer A, et al. Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. AAPM Report No. 85, AAPM TG65, 2004.10.37206/86
  7. [7] Mohan R, Chui C, Lidofsky L. Differential pencil beam dose computation model for photons. Med Phys. 1986;13(1):64-73.10.1118/1.5959243951411
  8. [8] Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577-592.10.1118/1.5963602770632
  9. [9] Ahnesjö A, Saxner M, Trepp A. A pencil beam model for photon dose calculation. Med Phys. 1992;19(2):263-273.10.1118/1.5968561584117
  10. [10] Bourland JD, Chaney EL. A finite-size pencil beam model for photon dose calculations in three dimensions. Med Phys. 1992;19(6):1401-1412.10.1118/1.5967721461202
  11. [11] Ahnesjö A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44(11):R99-155.10.1088/0031-9155/44/11/201
  12. [12] Knöös T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51(22):5785-5807.10.1088/0031-9155/51/22/005
  13. [13] Nakaguchi Y, Araki F, Maruyama M, Fukuda S. Comparison of RTPS and Monte Carlo dose distributions in heterogeneous phantoms for photon beams. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010;66(4):322-333.10.6009/jjrt.66.322
  14. [14] Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38(5):2651-2664.10.1118/1.3582690
  15. [15] Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2007;8(1):33-46.10.1120/jacmp.v8i1.2324
  16. [16] Sievinen J, Ulmer W, Kaissl W. AAA photon dose calculation model in Eclipse. RAD #7170B. Varian Medical Systems. 2005.
  17. [17] Ulmer W, Kaissl W. The inverse problem of a Gaussian convolution and its application to the finite size of the measurement chambers/detectors in photon and proton dosimetry. Phys Med Biol. 2003;48(6):707-727.10.1088/0031-9155/48/6/302
  18. [18] Ulmer W, Harder D. Applications of a Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning. Zeitschrift für Medizinische Physik. 1996;6(2):68-74.10.1016/S0939-3889(15)70784-1
  19. [19] Ulmer W, Harder D. A Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning. Zeitschrift für Medizinische Physik. 1995;5(1):25-30.10.1016/S0939-3889(15)70758-0
  20. [20] Vassiliev ON, Wareing TA, McGhee J, et al. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581-598.10.1088/0031-9155/55/3/00220057008
  21. [21] IAEA-TECDOC-1540: Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. IAEA. 2007.
  22. [22] Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45(4):983-995.10.1088/0031-9155/45/4/31310795986
  23. [23] Bush K, Gagne IM, Zavgorodni S, et al. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208-2221.10.1118/1.356714621626955
  24. [24] Kan MW, Leung LH, So RW, Yu PK. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma. Med Phys. 2013;40(3):031714.10.1118/1.479230823464309
  25. [25] Han T, Mourtada F, Kisling K, et al. Experimental Validation of Deterministic Acuros XB Algorithm for IMRT and VMAT Dose Calculations with the Radiological Physics Center’s Head and Neck Phantom. Med Phys. 2012;39(4):2193-2202.10.1118/1.3692180333766322482641
  26. [26] Fogliata A, Nicolini G, Clivio A, et al. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82.10.1186/1748-717X-6-82316841121771317
  27. [27] Fogliata A, Nicolini G, Clivio A, et al. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys. 2012;83(5):1587-1595.10.1016/j.ijrobp.2011.10.07822300575
  28. [28] Kan MW, Leung LH, Yu PK. Dosimetric impact of using the Acuros XB algorithm for intensity modulated radiation therapy and RapidArc planning in nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2013;85(1):e73-e80.10.1016/j.ijrobp.2012.08.03123040220
  29. [29] Fogliata A, Scorsetti M, Navarria P, et al. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy. Acta Oncol. 2013;52(3):545-552.10.3109/0284186X.2012.68985322671576
  30. [30] Rana S, Rogers K. Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes. J Med Phys. 2013;38(1):9-14.10.4103/0971-6203.106600360734723532180
  31. [31] Robinson D. Inhomogeneity correction and the analytic anisotropic algorithm. J Appl Clin Med Phys. 2008;9(2):2786.10.1120/jacmp.v9i2.2786572171018714283
  32. [32] Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta linear accelerator. Med Phys. 2007;34(5):1665-167710.1118/1.272731417555248
DOI: https://doi.org/10.2478/pjmpe-2018-0016 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 115 - 119
Submitted on: Jan 24, 2018
Accepted on: Aug 1, 2018
Published on: Oct 4, 2018
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Mohammed El Adnani Krabch, Abdelouahed Chetaine, Abdelati Nourreddine, Fatim Zohra Er-Radi, Laila Baddouh, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.