References
- Riaz, M., Khan, N., Khan, S.A., Ahmad, Z., Khan, M.A., Iqbal, M., Hemeg, H.A., Bakhsh, E.M. & Khan, S.B. (2022). Enhanced catalytic reduction/degradation of organic pollutants and antimicrobial activity with metallic nanoparticles immobilized on copolymer modified with NaY zeolite films. J. Mol. Liq., 359,119246–119270. DOI: 10/1016/j.molliq.2022.119246.
- 2.Yuan, F., Halawa, M.I., Ma, X., Abdussalam, A., Lou, B. & Xu, G. (2020). Electrochemiluminescence of Ru(bpy) 32+/Oxamic Hydrazide and its Application for Selective Detection of 4-Nitrobenzaldehyde. Chem. Electro. Chem. 7, 4239–4244. DOI: 10.1002/celc.202001140.
- 3.Santos, A.S.G.G., Orge, C.A., Soares, O.S.G.P. & Pereira, M.F.R. (2020). 4-Nitrobenzaldehyde removal by catalytic ozonation in the presence of CNT. J. Water Proc. Engin. 38,101573–101580. DOI: 10.1016/j.jwpe.2020.101573.
- Yildiz, S., Sahiner, M. & Sahiner, N. (2015). Ionic liquid hydrogel templates: bulk gel, cryogel, and microgel to be used for metal nanoparticle preparation and catalysis. Eur. Polym. J., 70, 66–78. DOI: 10.1016/j.eurpolymj.2015.07.005.
- Khorshidi, A. & Ghorbannezhad, B. (2017). A highly effective Ag–RANEY® nickel hybrid catalyst for reduction of nitrofurazone and aromatic nitro compounds in aqueous solution. RSC Adv., 7, 29938–29943. DOI: 10.1039/c7ra04343k.
- Ahmad, W., Singh, A., Jaiswal, K.K. & Gupta, P. (2021). Green synthesis of photocatalytic TiO2 nanoparticles for potential application in photochemical degradation of ornidazole. J. Inorg. Organomet. Polym. Mater. 31, 614–623. DOI:10.1007/s10904-020-01703-6.
- Min, J., Xu, L., Fang, S., Chen, W. & Hu, X. (2020). Microbial degradation kinetics and molecular mechanism of 2, 6-dichloro-4-nitrophenol by a Cupriavidus strain. Environ. Pollut. 258, 113703–113712. DOI: 10.1016/j.envpol.2019.113703.
- Ramos, R.L., Martins, M.F., Lebron, Y.A., Moreira, V.R., Reis, B.G., Grossi, L.B. & Amaral, M.C.S. (2021). Membrane distillation process for phenolic compounds removal from surface water. J. Environ. Chem. Eng. 9, 105588–105596. DOI: 10.1016/j.jece.2021.105588.
- Modirshahla, N., Behnajady, M.A. & Mohammadi-Aghdam, S. (2008). Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. J. Hazard. Mater., 154, 778–786. DOI: 10.1016/j.jhazmat.2007.10.120.
- Neal, R.D., Inoue, Y., Hughes, R.A. & Neretina, S. (2019). Catalytic reduction of 4-nitrophenol by gold catalysts: the influence of borohydride concentration on the induction time. J. Phys. Chem. C, 123, 12894–12901. DOI: 10.1021/acs.jpcc.9b02396.
- Ramu, A.G., Kumari, M.A., Elshikh, M.S., Alkhamis, H.H., Alrefaei, A.F. & Choi, D. (2021). A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in aqueous medium. Chemosphere, 271, 129475–129483, DOI: 10.1016/j.chemosphere.2020.129475.
- Navalón, S., Álvaro, M., Dhakshinamoorthy, A. & García, H. (2019). Encapsulation of metal nanoparticles within metal– organic frameworks for the reduction of nitro compounds. Molecules, 24, 3050–3072. DOI: 10.3390/molecules24173050.
- Bibi, S., Pervaiz, E. & Ali, M. (2021). Synthesis and applications of metal oxide derivatives of ZIF-67: a mini-review, Chem. Pap., 75, 2253–2275. DOI:10.3390/molecules24173050.
- Mu, L., Liu, B., Liu, H., Yang, Y., Sun, C. & Chen, G. (2012). A novel method to improve the gas storage capacity of ZIF-8. J. Mater. Chem. 22, 12246–12252. DOI: 10.1039/C2JM31541F.
- Zhong, G., Liu, D. & Zhang, J. (2018). The application of ZIF-67 and its derivatives: adsorption, separation, electro-chemistry and catalysts. J. Mater. Chem. A, 6, 1887–1899. DOI: 10.1039/C7TA08268A.
- Matatagui, D., Sainz-Vidal, A., Gràcia, I., Figueras, E., Cané, C. & Saniger, J.M. (2018). Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sens. Actuators B: Chem., 274, 601–608. DOI: 10.1016/j.snb.2018.07.137.
- Wang, L., Zhu, H., Shi, Y., Ge, Y., Feng, X., Liu, R. & Wang, L. (2018). Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale, 10, 11384–11391. DOI: 10.1039/C8NR02493F.
- Meng, Y., Zhang, L., Jiu, H., Zhang, Q., Zhang, H., Ren, W. & Li, D. (2019). Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity. Mater. Sci. Semicond. Process, 95, 35–41. DOI: 10.1016/j.mssp.2019.02.010.
- Shi, F., Ding, M., Tong, H., Yang, Y., Zhang, J., Wang, L. & Huo, Y. (2022). Photoelectrocatalytic sterilization on thorn-like ZIF-67/ZnO hybrid photoanodes. J. Environ. Chem. Eng., 10, 107385–107393. DOI: 10.1016/j.jece.2022.107385.
- Zhang, M., Liu, Q., Sun, L., Su, H. & Qi, C. (2020). Synthesis of high efficient and stable Au@ ZIF-8 with difference particle size for chemselective hydrogenation of nitro compounds. Catal. Lett., 150, 438–449. DOI: 10.1007/s10562-019-02963-9.
- Gholinejad, M., Naghshbandi, Z. & Sansano, J.M. (2022). Zeolitic imidazolate frameworks-67 (ZIF-67) supported PdCu nanoparticles for enhanced catalytic activity in Sonogashira-Hagihara and nitro group reduction under mild conditions. Mol. Catal. 518, 112093–112103. DOI: 10.1016/j.mcat.2021.112093.
- Malik, A. & Nath, M. (2020). Synthesis of Ag/ZIF-7 by immobilization of Ag nanoparticles onto ZIF-7 microcrystals: A heterogeneous catalyst for the reduction of nitroaromatic compounds and organic dyes. J. Environ. Chem. Eng. 8, 104547–104561. DOI: 10.1016/j.jece.2020.104547.
- Meng, W., Wen, Y., Dai, L., He, Z. & Wang, L. (2018). A novel electrochemical sensor for glu cose detection based on Ag@ ZIF-67 nanocomposite. Sens. Actuators B: Chem. 260, 852–860. DOI: 10.1016/j.snb.2018.01.109.
- Baba, A., Ouahbi, H., Hassine, A., Sebti, J., Laasri, L. & Sebti, S. (2018). Efficient reduction of aromatic nitro compounds catalyzed by nickel chloride supported on natural phosphate. Mediterr. J. Chem. 7, 317–327. DOI: 10.13171/MJC751911281520SS.
- Saghir, S. & Xiao, Z. (2021). Synthesis of novel Ag@ ZIF-67 rhombic dodecahedron for enhanced adsorptive removal of antibiotic and organic dye. J. Mol. Liq., 328, 115323–115334. DOI: 10.1016/j.molliq.2021.115323.
- Dong, Y., Duan, C., Sheng, Q. & Zheng, J. (2019). Preparation of Ag@ zeolitic imidazolate framework-67 at room temperature for electrochemical sensing of hydrogen peroxide. Analyst, 144, 521–529. DOI: 10.1039/C8AN01641K.
- Ma, L., Zhang, X., Ikram, M., Ullah, M., Wu, H. & Shi, K. (2020). Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultra trace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem. Eng. J. 395, 125216–125227. DOI: 10.1016/j.cej.2020.125216.
- Kohantorabi, M., Giannakis, S., Moussavi, G., Bensimon, M., Gholami, M.R. & Pulgarin, C. (2021). An innovative, highly stable Ag/ZIF-67@ GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light. J. Hazard. Mater. 413, 125308–125325. DOI: 10.1016/j.jhazmat.2021.125308.
- Shin, K.S., Cho, Y.K., Choi, J.Y. & Kim, K. (2012). Facile synthesis of silver-deposited silanized magnetite nano-particles and their application for catalytic reduction of nitrophenols. Appl. Catal. A: Gen. 413, 170–175. DOI: 10.1016/j.apcata.2011.11.006.
- Goyal, A., Bansal, S. & Singhal, S. (2014). Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe2O4 (M= Ni, Cu, Zn) nano ferrites. Int. J. Hydrog. Energy, 39, 4895–4908. DOI: 10.1016/j.ijhydene.2014.01.050.
- Shah, M.T., Balouch, A., Pathan, A.A., Mahar, A.M., Sabir, S., Khattak, R. & Umar, A.A. (2017). SiO2 caped Fe3O4 nanostructures as an active heterogeneous catalyst for 4-nitrophenol reduction. Microsyst. Technol. 23, 5745–5758. DOI: 10.1007/s00542-017-3431-8.
- Samuel, M.S., Bhattacharya, J., Parthiban, C., Viswanathan, G. & Singh, N.D.P. (2018). Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight. Ultrason. Sonochem. 49, 215–221. DOI: 10.1016/j.ultsonch.2018.08.004.