Have a personal or library account? Click to login
Molecular Dynamics Investigation of Interfacial Interactions and Wettability in Coal–SiO2–Water Three-Phase Systems Cover

Molecular Dynamics Investigation of Interfacial Interactions and Wettability in Coal–SiO2–Water Three-Phase Systems

By: Hanlin Chen  
Open Access
|Dec 2025

References

  1. Arif, M., Awan, F.U.R., Zhang, H. & Hosseini, M. (2024). Coal wettability: A holistic overview of the data sets, influencing factors, and knowledge gaps. Energy Fuels, 38(16), 15069–15084. DOI:10.1021/acs.energyfuels.4c03052.
  2. Sun, E.W.H. & Bourg, I.C. (2020). Molecular dynamics simulations of mineral surface wettability by water versus CO2: Thin films, contact angles, and capillary pressure in a silica nanopore. J. Phys. Chem. C, 124(46), 25382–25395. DOI:10.1021/acs.jpcc.0c07948.
  3. Chen, C., Wan, J., Li, W. & Song, Y. (2015). Water contact angles on quartz surfaces under supercritical CO2 sequestration conditions: Experimental and molecular dynamics simulation studies. Int. J. Greenhouse Gas Control, 42, 655–665. DOI: 10.1016/j.ijggc.2015.09.019.
  4. Han, Q., Deng, C., Jin, Z. & Gao, T. (2021). Molecular simulation of the adsorption characteristics of methane in pores of coal with different metamorphic degrees. Molecules, 26(23), 7217. DOI: 10.3390/molecules26237217.
  5. Jia, J., Song, H. & Jia, P. (2023). Molecular simulation of methane adsorption properties of coal samples with different coal rank superposition states. ACS omega, 8(3), 3461–3469. DOI: 10.1021/acsomega.2c07471.
  6. Mwakipunda, G.C., Wang, Y., Mgimba, M.M., Ngata, M.R., Alhassan, J., Mkono, C. N. & Yu, L. (2023). Recent advances in carbon dioxide sequestration in deep unmineable coal seams using CO2-ECBM technology: experimental studies, simulation, and field applications. Energy Fuels, 37(22), 17161–17186. DOI:10.1021/acs.energyfuels.3c03004.
  7. Liu, H., Li, Z., Zheng, C., Wang, Y., Song, F. & Meng, X. (2023). Wettability characteristics of low-rank coals under the coupling effect of high mineralization and surfactants. ACS omega, 8(42), 39004–39013. DOI:10.1021/acsomega.3c03583.
  8. Zhao, J., Lin, B., Lin, M., Liu, T., Liu, T. & Ma, S. (2025). New insights from molecular dynamic simulation on coal–water interface wettability. Chem. Eng. Sci., 122131. DOI:10.1016/j.ces.2025.122131.
  9. Liu, B., Lei, X., Ahmadi, M., Jiang, L. & Chen, Z. (2024). Surface modeling of wettability transition on α-quartz: insights from experiments and molecular dynamics simulations. J. Mol. Liq., 406, 125147. DOI: 10.1016/j.molliq.2024.125147.
  10. Hao, T., Jiang, S., Wang, L. & Jiang, W. (2024). Experimental and molecular dynamics simulation study of the effect of composite surfactants on wetting of coal dust. J. Mol. Liq., 409, 125552. DOI: 10.1016/j.molliq.2024.125552.
  11. Jiang, B., Zhou, Y., Ji, B., Zheng, Y., Yu, C. F., Huang, J. & Wang, X. H. (2023). Investigation on the effect of functional groups on the wettability of coal dust: Experiments and theoretical validation. Fuel, 351, 128987. DOI: 10.1016/j.fuel.2023.128987.
  12. Liu, Y.T., Li, H.M., Gao, M.Z., Ye, S.Q., Zhao, Y., Xie, J. & Zhou, W.Q. (2021). Experimental and molecular dynamics study into the surfactant effect upon coal wettability. RSC Adv., 11(40), 24543–24555. DOI: 10.1039/D1RA01882E.
  13. Xiao, P., Yang, X., Wang, R., Lin, H., Zhao, B., Liu, X. & Li, E. (2025). Investigating the interaction mechanisms of coal, water, and nano-SiO2 modified by different amounts of SDBS via molecular simulation. Surf. Interfaces, 107229. DOI: 10.1016/j.surfin.2025.107229.
  14. Wang, C., Yue, J., Zhang, M., Shi, B., Liang, Y. & Lou, Z. (2025). Wetting behavior and interaction mechanism between gas-containing coal and active water. Phys. Fluids, 37(8). DOI: 10.1063/5.0286685.
  15. Si, L., Xi, Y., Wei, J., Liu, Y., Sheng, L. & Zhang, J. (2022). Solid-liquid contact characteristics and microscopic wetting mechanism between coal and water in gas atmosphere. Fuel Process. Technol., 236, 107403. DOI: 10.1016/j.fuproc.2022.107403.
  16. Li, C., Zhang, J., Han, J. & Yao, B. (2021). A numerical solution to the effects of surface roughness on water–coal contact angle. Sci. Rep., 11(1), 459. DOI:10.1038/s41598-020-80729-9.
  17. Gosiewska, A., Drelich, J., Laskowski, J.S. & Pawlik, M. (2002). Mineral matter distribution on coal surface and its effect on coal wettability. J. Colloid Interf. Sci., 247(1), 107–116. DOI: 10.1006/jcis.2001.8130.
  18. Zhang, R., Xing, Y., Xia, Y., Luo, J., Tan, J., Rong, G. & Gui, X. (2020). New insight into surface wetting of coal with varying coalification degree: An experimental and molecular dynamics simulation study. Appl. Surf. Sci., 511, 145610. DOI: 10.1016/j.apsusc.2020.145610.
  19. Huang, Q., Yan, Y., Wang, G., Xie, J., Huang, Y., Li, M. & Feng, X. (2024). Imbibition behavior of water on coal surface and the impact of surfactant. Fuel, 355, 129475. DOI: 10.1016/j.fuel.2023.129475.
  20. Li, M., Liu, J. & Xia, Y. (2025). Risk Prediction of Gas Hydrate Formation in the Wellbore and Subsea Gathering System of Deep-Water Turbidite Reservoirs: Case Analysis from the South China Sea. Res. Sci., 1(1), 52–72. DOI: 10.62762/RS.2025.567907.
  21. Wu, J. & Ansari, U. (2025). From CO2 Sequestration to Hydrogen Storage: Further Utilization of Depleted Gas Reservoirs. Res. Sci. 1(1), 19–35. DOI: 10.62762/rs.2025.860510.
  22. Barati, R. & Liang, J.T. (2025). Effects of Crosslinking Agents and Reservoir Conditions on the Propagation of Fractures in Coal Reservoirs During Hydraulic Fracturing. Res. Sci. 1(1), 36–51. DOI: 10.62762/RS.2025.494074.
  23. Zhang, H., Song, C., Zhang, X., Zhao, H., Du, S., Tao, W. & Lv, Y. (2023). Synergistic effect of small molecular organic matter and functional groups in coal on methane adsorption. ACS omega, 9(1), 1156–1165. DOI: 10.1021/acsomega.3c07419.
  24. Jorgensen, W. L., Maxwell, D.S. & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236. DOI: 10.1021/ja9621760.
  25. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79(2), 926–935. DOI: 10.1063/1.445869.
  26. MacKerell Jr, A.D., Banavali, N. & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257–265. DOI: 10.1002/1097-0282(2000)56:4<;257::AID-BIP10029>3.0.CO;2-W.
Language: English
Page range: 46 - 57
Submitted on: Sep 10, 2025
|
Accepted on: Nov 14, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hanlin Chen, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.