Have a personal or library account? Click to login
Effect of Poly (2-hydroxyethyl methacrylate) on the Release of Phenylacetaldehyde from Chitosan Matrix Cover

Effect of Poly (2-hydroxyethyl methacrylate) on the Release of Phenylacetaldehyde from Chitosan Matrix

Open Access
|Dec 2025

References

  1. Gao Y. (2018). Introduction and synthesis of polymeric prodrugs. MOJ Bioequivalence & Bioavailability. 5(3), 125–128. DOI: 10.15406/mojbb.2018.05.00092.
  2. Duncan, R. & Kopeček, J. (1984). Soluble synthetic polymers as potential drug carriers. In: Polymers in Medicine. Advances in Polymer Science, vol 57, 59–75. Springer, Berlin, Heidelberg. DOI: 10.1007/3-540-12796-8_10.
  3. Braatz, D., Cherri, M., Tully, M., Dimde, M., Ma, G., Mohammadifar, E., Reisbeck, F., Ahmadi, V., Schirmer, M. & Haag, R. (2022). Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angewandte Chemie – International Edition. 61, e202203942 (1 of 29). DOI: 10.1002/anie.202203942.
  4. Ali Alghamdi, A., Al-Soulami, A., Saeed, W.S., Al-Odayni, A., Elsamalali, A., Abdulaziz Al-Owaais, A. & Aouak, T. (2019). Grafting of sulfamethoxazole on acrylic acid−vinyl methyl ketone copolymer using the schiff base reaction−application as a drug delivery system. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(5), 229–242. DOI: 10.1080/00914037.2018.1443929.
  5. Xin, Y. & Yuan, J. (2012). Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem. 3(11), 3045–3055. DOI: 10.1039/c2py20290e.
  6. Yang, X., Pan, Z., Choudhury, M.R., Yuan, Z., Anifowose, A., Yu, B., Wang, W. & Wang, B. (2020). Making smart drugs smarter: The importance of linker chemistry in targeted drug delivery. Med. Res. Rev. 40(6), 2682–2713. DOI: 10.1002/med.21720.
  7. Duceac, I.A. & Coseri, S. (2022). Chitosan Schiff-Base Hydrogels—A Critical Perspective Review. Gels. 8(12). DOI: 10.3390/gels8120779.
  8. Antony, R., Arun, T. & Manickam, S.T.D. (2019). A review on applications of chitosan-based Schiff bases. Int. J. Biol. Macromol. 129, 615–633. DOI: 10.1016/j.ijbiomac.2019.02.047.
  9. Varun Pawariya, Soumik De & Joydeep Dutta (2024). Chitosan-based-Schiff-bases-Promising-materials-for-biomedical-and-industrial-applications. Carbohydr Polym. 323, DOI: 10.1016/j.carbpol.2023.121395.
  10. Li, M., Wang, H., Chen, X., Jin, S., Chen, W., Meng, Y., Liu, Y., Guo, Y., Jiang, W., Xu, X. & Wang, B. (2020). Chemical grafting of antibiotics into multilayer films through Schiff base reaction for self-defensive response to bacterial infections. Chem. Engin. J. 382. DOI: 10.1016/j.cej.2019.122973.
  11. Zou, Q., Li, J. & Li, Y. (2015). Preparation and characterization of vanillin-crosslinked chitosan therapeutic bioactive microcarriers. Int. J. Biol. Macromol. 79, 736–747. DOI: 10.1016/j.ijbiomac.2015.05.037.
  12. Al KhulaifiR.S., AlShehri M.M., Al-Qadsy I., Al Jufareen, M., Saeed, W.S., Badjah-Hadj-Ahmed, A. & Aouak, T.(2023). Breaking the Equilibrium and Improving the Yield of Schiff Base Reactions by Pervaporation: Application to a Reaction Involving n-butylamine and Benzaldehyde. Separations, 10(12). DOI: 10.3390/separations10120602.
  13. Al-Odayni, A.B.M., Aouak, T., Alghamdi, A., Saeed, W.S., Ouldsmane, M., Karama, U. & Alothman, Z.A. (2018). Ibuprofen grafted on poly(2-hydroxyethylmethacrylate): Synthesis, mass transfer, and in vitro drug release investigations. J. Polym. Mat. Polym. Biomat. 67(1), 36–49. DOI: 10.1080/00914037.2017.1297940.
  14. Aljubailah, A., Alharbi, W.N.O., Haidyrah, A.S., Al-garni, T.S., Saeed, W.S., Semlali, A., Alqahtani, S.M.S., Al-Owais, A.A., Karmi, A.M. & Aouak, T. (2021). Copolymer involving 2-hydroxyethyl methacrylate and 2-chloroquinyl methacrylate: Synthesis, characterization and in vitro 2-hydroxychloroquine delivery application. Polymers (Basel), 13(23). DOI: 10.3390/polym13234072.
  15. Zare, M. et al. (2021) Phema: An overview for biomedical applications. Internat. J. Molec. Sci. 22, Preprint at https: DOI: 10.3390/ijms22126376.
  16. Bayramoǧlu, G. & Arica, M.Y. (2003) A Novel pH Sensitive Porous Membrane Carrier for Various Biomedical Applications Based on pHEMA/chitosan: Preparation and Its Drug Release Characteristics. in Macromolecular Symposia, 203, 213–218. DOI: 10.1002/masy.200351321.
  17. Caccavo, D., Cascone, S., Lamberti, G. & Barba, A.A. (2015). Modeling the drug release from hydrogel-based matrices. Mol. Pharm. 12(2), 474–483. DOI: 10.1021/mp500563n.
  18. Khan, S. & Ranjha, N.M. (2014). Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polymer Bulletin, 71(8), 2133–2158. DOI: 10.1007/s00289-014-1178-2.
  19. Martinez, A.W., Caves, J.M., Ravi, S., Li, W. & Chaikof, EL. (2014). Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomat. 10(1), 26–33. DOI: 10.1016/j.actbio.2013.08.029.
  20. Castelli, F., Pitarresi, G. & Giammona, G. (2000). Influence of Different Parameters on Drug Release from Hydrogel Systems to a Biomembrane Model. Evaluation by Differential Scanning Calorimetry Technique. Vol 21, 821–833. DOI: 10.1016/S0142-9612(99)00252-5.
  21. Deng, K.L., Zhong, H.B., Tian, T., Gou, Y.B., Li, Q. & Dong, L.R. (2010). Drug release behavior of a pH/temperature sensitive calcium alginate/poly(N-acryloylglycine) bead with core-shelled structure. Express Polym. Lett. 4(12), 773–780. DOI: 10.3144/expresspolymlett.2010.93.
  22. Mahdi, H.S. & Alshrefi, S.M. (2024). pH-Sensitive Swelling Behavior and Drug Release Kinetics of Chitosan-Modified Cs/HEMA Hydrogels. Preprint. DOI: 10.21203/rs.3.rs-3978283/v1.
  23. Heredia, N.S., Vizuete, K., Flores-Calero, M., Pazmiño, V. K., Pilaquinga, F. & Kumar, B., et al. (2022) Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS ONE, 17(3), e0264825. DOI: 10.1371/journal.pone.0264825.
  24. Costa, P. & Lobo, M.J.S. (2001). Modeling and Comparison of Dissolution Profiles. European J. Pharmac. Sci. 13(2), 123–133. DOI: 10.1016/S0928-0987(01)00095-1.
  25. Elmas, A., Akyüz, G., Bergal, A., Andaç, M. & Andaç, Ö. (2020). Mathematical modelling of drug release. Res. Engin. Structures Mat. 6(4), 327–350. DOI: 10.17515/resm2020.178na0122.
  26. Aouak, T., Saeed, W.S., Al-Hafi, N.M., Al-Odayni, A.B., Alghamdi, A.A. & Bedja, I. (2019). Poly (2-hydroxyethylmethacrylate -co-methylmethacrylate)/lignocaine contact lens preparation, characterization, and in vitro release dynamic. Polymers (Basel), 11(5), 917. DOI: 10.3390/polym11050917.
  27. Figueiredo, A.G.P.R., Figueiredo, A.R.P., Alonso-Varona, A., Fernandes, S., Palomares, T., Rubio-Azpeitia, E., Barros-Timmons, A., Silvestre, A.J.D., Pascoal-Neto, C. & Freire, C.S.R. (2013). Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films. Biomed. Res. Int. Volume 2013, Article ID 698141, 14 pages. DOI: 10.1155/2013/698141.
  28. Chauhan, D.S., Mazumder, M.A.J., Quraishi, M.A. & Ansari, K.R. (2020).Chitosan-cinnamaldehyde Schiff base: A bioinspired macromolecule as corrosion inhibitor for oil and gas industry. Int. J. Biol. Macromol. 158, 127–138. DOI: 10.1016/j.ijbiomac.2020.04.200.
  29. Mucha, M. & Pawlak, A. (2005). Thermal analysis of chitosan and its blends. Thermochim Acta. 427(1-2), 69–76. DOI: 10.1016/j.tca.2004.08.014.
  30. Sakurai, K., Maegawa, T. & Takahashi, T. (2000). Glass Transition Temperature of Chitosan and Miscibility of Chitosan/Poly(N-Vinyl Pyrrolidone) Blends. Polymer, (41), 7051–7056. DOI: 10.1016/S0032-3861(00)00067-7.
  31. Quijada-Garrido, I., Laterza, B., Mazón-Arechederra, J.M. & Barrales-Rienda, J.M. (2006). Characteristic features of chitosan/glycerol blends dynamics. Macromol. Chem. Phys. 207(19), 1742–1751. DOI:10.1002/macp.200600230.
  32. Dong, Y., Ruan, Y., Wang, H., Zhao, Y. & Bi, D. (2004). Studies on glass transition temperature of chitosan with four techniques. J. Appl. Polym. Sci. 93(4), 1553–1558. DOI: 10.1002/app.20630.
  33. Nandi, A.K. & Mandal, B.M., Bhattacharyya, S.N. (1985). Miscibility of Poly(Methy1 Acrylate) and Poly(Viny1 Acetate): Incompatibility in Solution and Thermodynamic Characterization by Inverse Gas Chromatography. Macromolecules 18, 1454–1460. DOI: 10.1021/ma00149a016.
  34. Stroeks, A., Paquaij, R. & Nies, E. (1991). Miscibility behaviour of the system polystyrene poly(p-methylstyrene). Polymer (Guildf). 32(14), 2653–2658. DOI: 10.1016/0032-3861(91)90347-L.
  35. Balau, L., Lisa, G., Popa, M.I. Tura, V. & Melnig, V. (2004). Physico-chemical properties of Chitosan films. Cent. Eur. J. Chem. 2, 638–647. DOI:10.2478/BF02482727.
  36. Beagan, A.M., Aouak, T., AlJuhaiman, L.A., Alodainy, A.M., Saeed, W.S. & Oulad Smane M.(2017) Poly(2-hydroxyethylmethacrylate-co-2-folate ethylmethacrylate) and Folic acid/Poly(2-hydroxyethylmethacrylate) Solid Solution: Preparation and Drug Release Investigation. Polym.- Plastics Technol. Engin. 56(18), 1997–2018. DOI: 10.1080/03602559.2017.1298799.
  37. Beagan, A.M., Aouak, T., AlJuhaiman, L.A., Alodainy, A. & Saeed, W.S. (2016). Poly(2-hydroxyethylmethacrylate-graft-folic acid), synthesis, solubility enhancement, and release dynamic of folic acid. Des Monomers Polym. 19(6), 479–495. DOI: 10.1080/15685551.2016.1169376.
  38. Kyzas, G.Z. & Bikiaris, D.N. (2015). Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar Drugs. 13(1), 312–337. DOI: 10.3390/md13010312.
  39. Kyzas, G.Z., Bikiaris, D.N. & Lazaridis, N.K. (2008). Low-swelling chitosan derivatives as biosorbents for basic dyes. Langmuir. 24(9), 4791–4799. DOI: 10.1021/la7039064.
  40. Kyzas, G.Z., Azizian, S. & Kostoglou, M. (2015). Novel approaches in designing natural/synthetic materials for environmental applications. Adv. Mat. Sci. Engin. Volume 2015, Article ID 820854, 1 page. DOI: 10.1155/2015/820854.
  41. Karaaslan, A.M., Tshabalala, M.A. & Buschle-Diller, G. (2010). Wood hemicellulose/chitosan-based semi: Interpenetrating network hydrogels: Mechanical, swelling and controlled drug release properties. Bioresources, 5(2), 1036–1054. DOI: 10.15376/biores.5.2.1036-1054.
  42. Ã-ztop, H.N., Saraydin, D. & Cetinus, Ş. (2002). pH-sensitive chitosan films for baker’s yeast immobilization. Appl. Biochem. Biotech. – Part A Enzyme Engin. Biotech. 101(3), 239–249. DOI: 10.1385/ABAB:101:3:239.
  43. García-Millán, E., Koprivnik, S. & Otero-Espinar, F.J. (2015). Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. Int. J. Pharm. 487(1-2), 260–269. DOI: 10.1016/j.ijpharm.2015.04.037.
Language: English
Page range: 34 - 45
Submitted on: Jul 29, 2025
|
Accepted on: Nov 14, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Fethia Benmerad, Hassiba Benguergoura, Soufiane Rahal, Taieb Aouak, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.