Have a personal or library account? Click to login
Electrocoagulation and Coupled Processes for Urea Wastewater Removal: Parametric study and gradient boosting optimization. Cover

Electrocoagulation and Coupled Processes for Urea Wastewater Removal: Parametric study and gradient boosting optimization.

Open Access
|Dec 2025

References

  1. Urbańczyk, E., Sowa, M. & Simka, W. (2016). Urea removal from aqueous solutions—a review. J. Appl. Electrochem. 46(10),1011–1029. DOI: 10.1007/s10800-016-0993-6.
  2. Weerakoon, D., Bansal, B. & Padhye, L.P. (2023). A critical review on current urea removal technologies from water: An approach for pollution prevention and resource recovery. Sep. Purif. Technol. 314 (February), 123652. DOI:10.1016/j.seppur.2023.123652.
  3. El Gheriany, I., Abdel-Aziz, M.H., El-Ashtoukhy, E.S.Z. & Sedahmed, G.H. (2022) Electrochemical removal of urea from wastewater by anodic oxidation using a new cell design: An experimental and modeling study. Process Saf. Environ Prot. 159,133–145. DOI: 10.1016/j.psep.2021.12.055.
  4. Shaban, A., Basiouny, M.E. & AboSiada, O.A.(2023). Evaluation of Using Sequential Electrocoagulation and Chemical Coagulation for Urea Removal from Synthetic and Domestic Wastewater. Water, Air, Soil Pollut. 234(11).1–14. DOI: 10.1007/s11270-023-06743-5.
  5. Mamdouh, M., Safwat, S.M., Abd-Elhalim, H. & Rozaik,. E. (2021). Urea removal using electrocoagulation process with copper and iron electrodes. Desalin Water Treat. 213, 259–268. DOI: 10.5004/dwt.2021.26690.
  6. Chen, Y., Chen, H., Chen, Z., Hu, H., Deng, C. & Wang, X.(2021). The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor. J. Environ. Manage. 292(May),112762. DOI:10.1016/j.jenvman.2021.112762.
  7. Safwat, S.M. & Matta, M.E.(2020). Performance evaluation of electrocoagulation process using zinc electrodes for removal of urea. Sep. Sci. Technol. 55(14), 2500–2509. DOI: 10.1080/01496395.2019.1636067.
  8. Kameda, T., Horikoshi, K., Kumagai, S., Saito, Y. & Yoshioka, T. (2020). Adsorption of urea, creatinine, and uric acid onto spherical activated carbon. Sep. Purif. Technol. 237,116367. DOI: 10.1016/j.seppur.2019.116367.
  9. Mahalik, K., Sahu, J.N., Patwardhan, A.V. & Meikap, B.C. (2010). Kinetic studies on hydrolysis of urea in a semi-batch reactor at atmospheric pressure for safe use of ammonia in a power plant for flue gas conditioning. J. Hazard Mater. 175(1–3), 629–637. DOI: 10.1016/j.jhazmat.2009.10.053.
  10. Shen, S., Li, M., Li, B. & Zhao, Z. (2014).Catalytic hydrolysis of urea from wastewater using different aluminas by a fixed bed reactor. Environ. Sci. Pollut. Res. 21(21), 12563–12568. DOI: 10.1007/s11356-014-3189-9.
  11. Tan, T., Liu, S., Chen, K., Imhanria, S., Tao, P. & Wang, W. (2020). A multi-component system for urea electrooxidation: Ir3Sn nanoparticles loading on Iron- and Nitrogen- codoped composite carbon support. J. Taiwan Inst. Chem. Eng. 112, 116–121. DOI: 10.1016/j.jtice.2020.06.017.
  12. Von Ahnen, M., Pedersen, L.F., Pedersen, P.B. & Dalsgaard, J. (2015). Degradation of urea, ammonia and nitrite in moving bed biofilters operated at different feed loadings. Aquac Eng. 69, 50–59. DOI:10.1016/j.aquaeng.2015.10.004.
  13. Lu, J., Zhang, P. & Li, J.(2024). Mo(VI) removal from water by aluminum electrocoagulation: Cost-effectiveness analysis, main influencing factors, and proposed mechanisms. J. Hazard Mater. 461 (June 2023), 132608. DOI: 10.1016/j.jhazmat.2023.132608.
  14. Pinedo-Hernández, J., Marrugo-Negrete, J., Pérez-Espitia, M., Durango-Hernández, J., Enamorado-Montes, G. & Navarro-Frómeta, A.(2024). A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate. J. Environ Manage. 351(December 2023). DOI: 10.1016/j.jenvman.2023.119681.
  15. Rangseesuriyachai, T., Pinpatthanapong, K., Boonnorat, J., Jitpinit, S., Pinpatthanapong, T. & Mueansichai, T. (2024). Optimization of COD and TDS removal from high-strength hospital wastewater by electrocoagulation using aluminium and iron electrodes: Insights from central composite design. J. Environ. Chem. Eng. 12(1),111627. DOI: 10.1016/j.jece.2023.111627.
  16. Sivaranjani., G.A. & Ali, N. (2020). Applicability and new trends of different electrode materials and its combinations in electro coagulation process: A brief review. Mater. Today Proc. 37 (Part 2), 377–382. DOI: 10.1016/j.matpr.2020.05.379.
  17. Cherifi, M., Belkacem, M., Hazourli, S., Debra, F.L. & Atba, W. (2023). A comparative study of hydrogen peroxide oxidation and electrocoagulation using aluminum, iron, and zinc electrodes for urban sludge disintegration. Sep. Sci. Technol. 58(10),1806–1820. DOI: 10.1080/01496395.2023.2213395.
  18. Hashim, K.S., Shaw, A., Al Khaddar, R., Pedrola, M.O. & Phipps, D. (2017). Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manage. 189, 98–108. DOI: 10.1016/J.JENVMAN.2016.12.035.
  19. Ali, I., Asim, M. & Khan, TA. (2013). Arsenite removal from water by electro-coagulation on zinc-zinc and copper-copper electrodes. Int. J. Environ. Sci. Technol. 10(2), 377–384. DOI: 10.1007/s13762-012-0113-z.
  20. Fajardo, A.S., Rodrigues, R.F., Martins, R.C., Castro, L.M. & Quinta-Ferreira, R.M.(2015). Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chem. Eng J. 275, 331–341. DOI:10.1016/J.CEJ.2015.03.116.
  21. Gong, C., Zhang, J., Ren, X., He, C., Han, J. & Zhang, Z. (2022). A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater. Chemosphere. 303(P3), 135249. DOI:10.1016/j.chemosphere.2022.135249.
  22. Hussin, F., Abnisa, F., Issabayeva, G. & Aroua, MK.(2017). Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode. J. Clean Prod. 147, 206–216. DOI: 10.1016/j.jclepro.2017.01.096.
  23. Safwat, S.M., Mamdouh, M., Rozaik, E. & Abd-Elhalim, H. (2020). Performance evaluation of electrocoagulation process using aluminum and titanium electrodes for removal of urea. Desalin Water Treat. 191, 239–249. DOI: 10.5004/dwt.2020.25616.
  24. Obi, C.C., Nwabanne, J.T., Igwegbe, C.A., Ohale, P.E. & Okpala, COR. (2022). Multi-characteristic optimization and modeling analysis of electrocoagulation treatment of abattoir wastewater using iron electrode pairs. J. Water Process Eng. 49 (June),103136. DOI: 10.1016/j.jwpe.2022.103136.
  25. Gholami Shirkoohi, M., Tyagi, R.D., Vanrolleghem, P.A. & Drogui, P. (2022). A comparison of artificial intelligence models for predicting phosphate removal efficiency from wastewater using the electrocoagulation process. Digit Chem. Eng. 4(June), 100043. DOI: 10.1016/j.dche.2022.100043.
  26. Onu, C.E., Nweke, C.N. & Nwabanne, J.T. (2022). Modeling of thermo-chemical pretreatment of yam peel substrate for biogas energy production: RSM, ANN, and ANFIS comparative approach. Appl. Surf. Sci. Adv. 11(April), 100299. DOI: 10.1016/j.apsadv.2022.100299.
  27. Igwegbe, C.A., Obi, C.C. & Ohale, P.E. (2023). Modelling and optimisation of electrocoagulation/flocculation recovery of effluent from land-based aquaculture by artificial intelligence (AI) approaches. Environ Sci. Pollut. Res. 30(27), 70897–70917. DOI: 10.1007/s11356-023-27387-2.
  28. Wang, G., Jia, Q.S., Zhou, M.C., Bi, J., Qiao, J. & Abusorrah, A. (2022). Artificial neural networks for water quality soft-sensing in wastewater treatment: a review. Artif. Intell. Rev. 55(1), 565–587. DOI: 10.1007/s10462-021-10038-8.
  29. Touzani, S., Granderson, J. & Fernandes, S. (2018). Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 158, 1533–1543. DOI: 10.1016/j.enbuild.2017.11.039.
  30. Boulmaiz, A., Berredjem, H., Cheikchouk, K., Boulkrah, A., Aouras, H. & Djedi, H. (2024). Predicting HER2 Status Associated with Breast Cancer Aggressiveness Using Four Machine Learning Models. Asian Pacific J. Cancer Prev. 25(10), 3609–3618. DOI: 10.31557/APJCP.2024.25.10.3609.
  31. Obi, C.C., Nwabanne, J.T., Igwegbe, C.A., Abonyi, M.N., Umembamalu, C.J. & Kamuche, T.T.G. (2024). Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes. J. Environ. Manage. 353 (November 2023),120161. DOI: 10.1016/j.jenvman.2024.120161.
  32. Otchere, D.A., Ganat, T.O.A., Ojero, J.O., Tackie-Otoo, B.N. & Taki, M.Y. (2022). Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. J. Pet. Sci. Eng. 208(May),109244. DOI: 10.1016/j.petrol.2021.109244.
  33. Wang, H. & Gu, G. (2015). Wavelet gradient boosting regression method study in short-term load forecasting. Smart Grid. 5(4), 189–196. DOI: 10.12677/sg.2015.54023.
  34. Fox, J. & Weisberg, S. (2018). An R Companion to Applied Regression. Sage publications.
  35. Chan, K.M.A., Boyd, D.R. & Gould, R.K.(2020). Levers and leverage points for pathways to sustainability. People Nat. 2(3), 693–717. DOI: 10.1002/pan3.10124.
  36. Bajpai, M., Katoch, S.S., Kadier, A. & Singh, A. (2022). A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. Environ. Sci. Pollut. Res. 29(11), 15252–15281. DOI: 10.1007/s11356-021-18348-8.
  37. Asaithambi, P. (2016). Studies on various operating parameters for the removal of COD from pulp and paper industry using electrocoagulation process. Desalin Water Treat. 57(25), 11746–11755. DOI: 10.1080/19443994.2015.1046149.
  38. Jing, G., Ren, S., Pooley, S., Sun, W., Kowalczuk, P.B. & Gao, Z. (2021). Electrocoagulation for industrial wastewater treatment: an updated review. Environ. Sci. Water Res. Technol. 7(7), 1177–1196. DOI: 10.1039/D1EW00158B.
  39. El-Shazly, A.H. & Daous, M.A. (2013). Kinetics and performance of phosphate removal from hot industrial effluents using a continuous flow electrocoagulation reactor. Int. J. Electrochem. Sci. 8(1),184–194. DOI: 10.1016/s1452-3981(23)14012-0.
  40. Khanaum, M.M. & Borhan, M.S. (2023). Electrocoagulation: An Overview of the Technology for Livestock Farm Wastewater Treatment. Waste Technol. 11(1), 1–16. DOI: 10.14710/wastech.11.1.1-16.
  41. Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S. & Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Saf. Environ. Prot. 129, 47–54. DOI: 10.1016/j.psep.2019.06.010.
  42. Simka, W., Piotrowski, J. & Nawrat, G.(2007). Influence of anode material on electrochemical decomposition of urea. Electrochim Acta. 52(18), 5696–5703. DOI:10.1016/j.electacta.2006.12.017.
  43. Simka, W., Piotrowski, J., Robak, A. & Nawrat, G. (2009). Electrochemical treatment of aqueous solutions containing urea. J. Appl. Electrochem. 39(7), 1137–1143. DOI: 10.1007/s10800-008-9771-4.
  44. Hakizimana, J.N., Gourich, B. & Chafi, M. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination. 404, 1–21. DOI: 10.1016/j.desal.2016.10.011.
  45. Atba, W., Cherifi, M., Grid, A., Debra, F.L. & Hazourli, S. (2023). Effect of Electrocoagulation Parameters on Chromium Removal, Sludge Settling, and Energy Consumption. Anal. Bioanal. Electrochem. 15(3), 166–183. DOI: 10.22034/abec.2023.703899.
  46. Shaker, O.A., Safwat, S.M. & Matta, M.E. (2023). Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis. Environ. Sci. Pollut. Res. 30(10), 26650–26662. DOI: 10.1007/s11356-022-24101-6.
  47. Arroyo, M.G., Pérez-Herranz, V., Montañés, M.T., García-Antón, J. & Guiñón, J.L. (2009). Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. J. Hazard. Mater. 169(1-3), 1127–1133. DOI: 10.1016/j.jhazmat.2009.04.089.
  48. Chen, G., Chen, X. & Yue, PL. (2000). E Lectrocoagulation and E Lectroflotation. J Environ Eng. 126(September), 858–863.
  49. Uhlig, H.H. & Revie, R.W. (2000). Uhlig’s Corrosion Handbook.
  50. Comninellis, C. & Chen, G. (2010). Electrochemistry for the Environment. 2015.
  51. Graça, N.S., Ribeiro, A.M. & Rodrigues, A.E. (2019). Modeling the electrocoagulation process for the treatment of contaminated water. Chem. Eng. Sci. 197, 379–385. DOI: 10.1016/j.ces.2018.12.038.
  52. Tiaiba, M., Merzouk, B., Amour, A., Mazour, M., Leclerc, J.P. & Lapicque, F. (2017). Influence of electrodes connection mode and type of current in electrocoagulation process on the removal of a textile dye. Desalin Water Treat. 73, 330–338. DOI: 10.5004/DWT.2017.20502.
  53. Safwat, S.M. (2020). Treatment of real printing waste-water using electrocoagulation process with titanium and zinc electrodes. J. Water Process Eng. 34(January), 101137. DOI: 10.1016/j.jwpe.2020.101137.
  54. Safwat, S.M., Hamed, A. & Rozaik, E. (2019). Electrocoagulation/electroflotation of real printing wastewater using copper electrodes: A comparative study with aluminum electrodes. Sep. Sci. Technol. 54(1),183–194. DOI: 10.1080/01496395.2018.1494744.
  55. Medina Collana, J.T., Ayllon Ormeño, M. & Julca Meza, C. Processes Coupled to Electrocoagulation for the Treatment of Distillery Wastewaters. Sustain. 16(15). DOI: 10.3390/su16156383.
  56. Al-Kilani, M.R. & Bani-Melhem, K. (2025). The performance of electrocoagulation process for decolorization and COD removal of highly colored real grey water under variable operating conditions. Desalin Water Treat. 321 (November 2024), 100924. DOI: 10.1016/j.dwt.2024.100924.
  57. Al-Raad, A.A. & Hanafiah, M.M. (2021). Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms. J. Environ Manage. 300 (February), 113696. DOI: 10.1016/j.jenvman.2021.113696.
  58. Attour, A., Touati, M., Tlili, M., Ben Amor, M., Lapicque, F. & Leclerc, JP.(2014). Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep. Purif. Technol. 123, 124–129. DOI: 10.1016/j.seppur.2013.12.030.
  59. Vasudevan, S., Lakshmi, J. & Sozhan, G. (2012). Toxicological & Environmental Chemistry Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation. Toxicol Environ. Chem. 94 (December 2012), 37–41.
  60. Vepsäläinen, M., Ghiasvand, M. & Selin, J. (2009). Investigations of the effects of temperature and initial sample pH on natural organic matter (NOM) removal with electro-coagulation using response surface method (RSM). Sep. Purif. Technol. 69(3), 255–261. DOI: 10.1016/j.seppur.2009.08.001.
  61. Song, S., He, Z., Qiu, J., Xu, L. & Chen, J. (2007). Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters. Sep. Purif. Technol. 55(2), 238–245. DOI: 10.1016/j.seppur.2006.12.013.
  62. El-Naas, M.H., Al-Zuhair, S., Al-Lobaney, A. & Makhlouf, S. (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J. Environ. Manage. 91(1), 180–185. DOI: 10.1016/j.jenvman.2009.08.003.
  63. Khandegar, V. & Saroha, A.K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. J. Environ. Manage. 128, 949–963. DOI: 10.1016/j.jenvman.2013.06.043.
  64. Shaban, A., Basiouny, M.E. & AboSiada, O.A. (2024). Comparative study of the removal of urea by electrocoagulation and electrocoagulation combined with chemical coagulation in aqueous effluents. Sci. Rep. 14(1), 1–14. DOI: 10.1038/s41598-024-81422-x.
  65. Hassan, K., Farzana, R. & Sahajwalla, V. (2019). In-situ fabrication of ZnO thin film electrode using spent Zn–C battery and its electrochemical performance for supercapacitance. SN Appl. Sci. 1(4),1–13. DOI: 10.1007/s42452-019-0302-1.
  66. Medvidović, N.V., Vrsalović, L., Svilović, S., Bilušić, A. & Jozić, D. (2023). Electrocoagulation treatment of compost leachate using aluminium alloy, carbon steel and zinc anode. Appl. Surf. Sci. Adv. 15 (December 2022). DOI: 10.1016/j.apsadv.2023.100404.
  67. Kuchar, D., Fukuta, T., Onyango, M.S. & Matsuda, H. (2006). Sulfidation of zinc plating sludge with Na2S for zinc resource recovery. J. Hazard. Mater. 137(1), 185–191. DOI: 10.1016/j.jhazmat.2006.01.052.
  68. Xu, Z., Ma, X., Liao, J., Osman, S.M., Wu, S. & Luque, R. (2022). Effects on the Physicochemical Properties of Hydrochar Originating from Deep Eutectic Solvent (Urea and ZnCl2)-Assisted Hydrothermal Carbonization of Sewage Sludge. ACS Sustain. Chem. Eng. 10(13), 4258–4268. DOI: 10.1021/acssuschemeng.2c00086.
  69. Nguyen, M.D., Thomas, M., Surapaneni, A., Moon, E.M. & Milne, N.A. (2022). Beneficial reuse of water treatment sludge in the context of circular economy. Environ. Technol. Innov. 28, 102651. DOI: 10.1016/j.eti.2022.102651.
  70. Rodriguez, N., Gijsemans, L. & Bussé, J. (2020). Selective Removal of Zinc from BOF Sludge by Leaching with Mixtures of Ammonia and Ammonium Carbonate. J. Sustain Metall. 6(4), 680–690. DOI: 10.1007/s40831-020-00305-3.
  71. Liu, S.H. & Wang, H.P. (2008). Fate of zinc in an electro-plating sludge during electrokinetic treatments. Chemosphere. 72(11), 1734–1738. DOI: 10.1016/j.chemosphere.2008.04.077.
  72. Hegazy, B.E. (2007). Brick making from water treatment plant sludge. J. Eng. Appl. Sci. 54(6), 599–615.
Language: English
Page range: 20 - 33
Submitted on: Jun 20, 2025
|
Accepted on: Sep 19, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wafa Atba, Mouna Cherifi, Sabir Hazourli, Amel Boulmaiz, François Lapicque, Azzeddine Grid, Debra F. Laefer, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.