References
- Urbańczyk, E., Sowa, M. & Simka, W. (2016). Urea removal from aqueous solutions—a review. J. Appl. Electrochem. 46(10),1011–1029. DOI: 10.1007/s10800-016-0993-6.
- Weerakoon, D., Bansal, B. & Padhye, L.P. (2023). A critical review on current urea removal technologies from water: An approach for pollution prevention and resource recovery. Sep. Purif. Technol. 314 (February), 123652. DOI:10.1016/j.seppur.2023.123652.
- El Gheriany, I., Abdel-Aziz, M.H., El-Ashtoukhy, E.S.Z. & Sedahmed, G.H. (2022) Electrochemical removal of urea from wastewater by anodic oxidation using a new cell design: An experimental and modeling study. Process Saf. Environ Prot. 159,133–145. DOI: 10.1016/j.psep.2021.12.055.
- Shaban, A., Basiouny, M.E. & AboSiada, O.A.(2023). Evaluation of Using Sequential Electrocoagulation and Chemical Coagulation for Urea Removal from Synthetic and Domestic Wastewater. Water, Air, Soil Pollut. 234(11).1–14. DOI: 10.1007/s11270-023-06743-5.
- Mamdouh, M., Safwat, S.M., Abd-Elhalim, H. & Rozaik,. E. (2021). Urea removal using electrocoagulation process with copper and iron electrodes. Desalin Water Treat. 213, 259–268. DOI: 10.5004/dwt.2021.26690.
- Chen, Y., Chen, H., Chen, Z., Hu, H., Deng, C. & Wang, X.(2021). The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor. J. Environ. Manage. 292(May),112762. DOI:10.1016/j.jenvman.2021.112762.
- Safwat, S.M. & Matta, M.E.(2020). Performance evaluation of electrocoagulation process using zinc electrodes for removal of urea. Sep. Sci. Technol. 55(14), 2500–2509. DOI: 10.1080/01496395.2019.1636067.
- Kameda, T., Horikoshi, K., Kumagai, S., Saito, Y. & Yoshioka, T. (2020). Adsorption of urea, creatinine, and uric acid onto spherical activated carbon. Sep. Purif. Technol. 237,116367. DOI: 10.1016/j.seppur.2019.116367.
- Mahalik, K., Sahu, J.N., Patwardhan, A.V. & Meikap, B.C. (2010). Kinetic studies on hydrolysis of urea in a semi-batch reactor at atmospheric pressure for safe use of ammonia in a power plant for flue gas conditioning. J. Hazard Mater. 175(1–3), 629–637. DOI: 10.1016/j.jhazmat.2009.10.053.
- Shen, S., Li, M., Li, B. & Zhao, Z. (2014).Catalytic hydrolysis of urea from wastewater using different aluminas by a fixed bed reactor. Environ. Sci. Pollut. Res. 21(21), 12563–12568. DOI: 10.1007/s11356-014-3189-9.
- Tan, T., Liu, S., Chen, K., Imhanria, S., Tao, P. & Wang, W. (2020). A multi-component system for urea electrooxidation: Ir3Sn nanoparticles loading on Iron- and Nitrogen- codoped composite carbon support. J. Taiwan Inst. Chem. Eng. 112, 116–121. DOI: 10.1016/j.jtice.2020.06.017.
- Von Ahnen, M., Pedersen, L.F., Pedersen, P.B. & Dalsgaard, J. (2015). Degradation of urea, ammonia and nitrite in moving bed biofilters operated at different feed loadings. Aquac Eng. 69, 50–59. DOI:10.1016/j.aquaeng.2015.10.004.
- Lu, J., Zhang, P. & Li, J.(2024). Mo(VI) removal from water by aluminum electrocoagulation: Cost-effectiveness analysis, main influencing factors, and proposed mechanisms. J. Hazard Mater. 461 (June 2023), 132608. DOI: 10.1016/j.jhazmat.2023.132608.
- Pinedo-Hernández, J., Marrugo-Negrete, J., Pérez-Espitia, M., Durango-Hernández, J., Enamorado-Montes, G. & Navarro-Frómeta, A.(2024). A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate. J. Environ Manage. 351(December 2023). DOI: 10.1016/j.jenvman.2023.119681.
- Rangseesuriyachai, T., Pinpatthanapong, K., Boonnorat, J., Jitpinit, S., Pinpatthanapong, T. & Mueansichai, T. (2024). Optimization of COD and TDS removal from high-strength hospital wastewater by electrocoagulation using aluminium and iron electrodes: Insights from central composite design. J. Environ. Chem. Eng. 12(1),111627. DOI: 10.1016/j.jece.2023.111627.
- Sivaranjani., G.A. & Ali, N. (2020). Applicability and new trends of different electrode materials and its combinations in electro coagulation process: A brief review. Mater. Today Proc. 37 (Part 2), 377–382. DOI: 10.1016/j.matpr.2020.05.379.
- Cherifi, M., Belkacem, M., Hazourli, S., Debra, F.L. & Atba, W. (2023). A comparative study of hydrogen peroxide oxidation and electrocoagulation using aluminum, iron, and zinc electrodes for urban sludge disintegration. Sep. Sci. Technol. 58(10),1806–1820. DOI: 10.1080/01496395.2023.2213395.
- Hashim, K.S., Shaw, A., Al Khaddar, R., Pedrola, M.O. & Phipps, D. (2017). Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manage. 189, 98–108. DOI: 10.1016/J.JENVMAN.2016.12.035.
- Ali, I., Asim, M. & Khan, TA. (2013). Arsenite removal from water by electro-coagulation on zinc-zinc and copper-copper electrodes. Int. J. Environ. Sci. Technol. 10(2), 377–384. DOI: 10.1007/s13762-012-0113-z.
- Fajardo, A.S., Rodrigues, R.F., Martins, R.C., Castro, L.M. & Quinta-Ferreira, R.M.(2015). Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chem. Eng J. 275, 331–341. DOI:10.1016/J.CEJ.2015.03.116.
- Gong, C., Zhang, J., Ren, X., He, C., Han, J. & Zhang, Z. (2022). A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater. Chemosphere. 303(P3), 135249. DOI:10.1016/j.chemosphere.2022.135249.
- Hussin, F., Abnisa, F., Issabayeva, G. & Aroua, MK.(2017). Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode. J. Clean Prod. 147, 206–216. DOI: 10.1016/j.jclepro.2017.01.096.
- Safwat, S.M., Mamdouh, M., Rozaik, E. & Abd-Elhalim, H. (2020). Performance evaluation of electrocoagulation process using aluminum and titanium electrodes for removal of urea. Desalin Water Treat. 191, 239–249. DOI: 10.5004/dwt.2020.25616.
- Obi, C.C., Nwabanne, J.T., Igwegbe, C.A., Ohale, P.E. & Okpala, COR. (2022). Multi-characteristic optimization and modeling analysis of electrocoagulation treatment of abattoir wastewater using iron electrode pairs. J. Water Process Eng. 49 (June),103136. DOI: 10.1016/j.jwpe.2022.103136.
- Gholami Shirkoohi, M., Tyagi, R.D., Vanrolleghem, P.A. & Drogui, P. (2022). A comparison of artificial intelligence models for predicting phosphate removal efficiency from wastewater using the electrocoagulation process. Digit Chem. Eng. 4(June), 100043. DOI: 10.1016/j.dche.2022.100043.
- Onu, C.E., Nweke, C.N. & Nwabanne, J.T. (2022). Modeling of thermo-chemical pretreatment of yam peel substrate for biogas energy production: RSM, ANN, and ANFIS comparative approach. Appl. Surf. Sci. Adv. 11(April), 100299. DOI: 10.1016/j.apsadv.2022.100299.
- Igwegbe, C.A., Obi, C.C. & Ohale, P.E. (2023). Modelling and optimisation of electrocoagulation/flocculation recovery of effluent from land-based aquaculture by artificial intelligence (AI) approaches. Environ Sci. Pollut. Res. 30(27), 70897–70917. DOI: 10.1007/s11356-023-27387-2.
- Wang, G., Jia, Q.S., Zhou, M.C., Bi, J., Qiao, J. & Abusorrah, A. (2022). Artificial neural networks for water quality soft-sensing in wastewater treatment: a review. Artif. Intell. Rev. 55(1), 565–587. DOI: 10.1007/s10462-021-10038-8.
- Touzani, S., Granderson, J. & Fernandes, S. (2018). Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 158, 1533–1543. DOI: 10.1016/j.enbuild.2017.11.039.
- Boulmaiz, A., Berredjem, H., Cheikchouk, K., Boulkrah, A., Aouras, H. & Djedi, H. (2024). Predicting HER2 Status Associated with Breast Cancer Aggressiveness Using Four Machine Learning Models. Asian Pacific J. Cancer Prev. 25(10), 3609–3618. DOI: 10.31557/APJCP.2024.25.10.3609.
- Obi, C.C., Nwabanne, J.T., Igwegbe, C.A., Abonyi, M.N., Umembamalu, C.J. & Kamuche, T.T.G. (2024). Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes. J. Environ. Manage. 353 (November 2023),120161. DOI: 10.1016/j.jenvman.2024.120161.
- Otchere, D.A., Ganat, T.O.A., Ojero, J.O., Tackie-Otoo, B.N. & Taki, M.Y. (2022). Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. J. Pet. Sci. Eng. 208(May),109244. DOI: 10.1016/j.petrol.2021.109244.
- Wang, H. & Gu, G. (2015). Wavelet gradient boosting regression method study in short-term load forecasting. Smart Grid. 5(4), 189–196. DOI: 10.12677/sg.2015.54023.
- Fox, J. & Weisberg, S. (2018). An R Companion to Applied Regression. Sage publications.
- Chan, K.M.A., Boyd, D.R. & Gould, R.K.(2020). Levers and leverage points for pathways to sustainability. People Nat. 2(3), 693–717. DOI: 10.1002/pan3.10124.
- Bajpai, M., Katoch, S.S., Kadier, A. & Singh, A. (2022). A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. Environ. Sci. Pollut. Res. 29(11), 15252–15281. DOI: 10.1007/s11356-021-18348-8.
- Asaithambi, P. (2016). Studies on various operating parameters for the removal of COD from pulp and paper industry using electrocoagulation process. Desalin Water Treat. 57(25), 11746–11755. DOI: 10.1080/19443994.2015.1046149.
- Jing, G., Ren, S., Pooley, S., Sun, W., Kowalczuk, P.B. & Gao, Z. (2021). Electrocoagulation for industrial wastewater treatment: an updated review. Environ. Sci. Water Res. Technol. 7(7), 1177–1196. DOI: 10.1039/D1EW00158B.
- El-Shazly, A.H. & Daous, M.A. (2013). Kinetics and performance of phosphate removal from hot industrial effluents using a continuous flow electrocoagulation reactor. Int. J. Electrochem. Sci. 8(1),184–194. DOI: 10.1016/s1452-3981(23)14012-0.
- Khanaum, M.M. & Borhan, M.S. (2023). Electrocoagulation: An Overview of the Technology for Livestock Farm Wastewater Treatment. Waste Technol. 11(1), 1–16. DOI: 10.14710/wastech.11.1.1-16.
- Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S. & Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Saf. Environ. Prot. 129, 47–54. DOI: 10.1016/j.psep.2019.06.010.
- Simka, W., Piotrowski, J. & Nawrat, G.(2007). Influence of anode material on electrochemical decomposition of urea. Electrochim Acta. 52(18), 5696–5703. DOI:10.1016/j.electacta.2006.12.017.
- Simka, W., Piotrowski, J., Robak, A. & Nawrat, G. (2009). Electrochemical treatment of aqueous solutions containing urea. J. Appl. Electrochem. 39(7), 1137–1143. DOI: 10.1007/s10800-008-9771-4.
- Hakizimana, J.N., Gourich, B. & Chafi, M. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination. 404, 1–21. DOI: 10.1016/j.desal.2016.10.011.
- Atba, W., Cherifi, M., Grid, A., Debra, F.L. & Hazourli, S. (2023). Effect of Electrocoagulation Parameters on Chromium Removal, Sludge Settling, and Energy Consumption. Anal. Bioanal. Electrochem. 15(3), 166–183. DOI: 10.22034/abec.2023.703899.
- Shaker, O.A., Safwat, S.M. & Matta, M.E. (2023). Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis. Environ. Sci. Pollut. Res. 30(10), 26650–26662. DOI: 10.1007/s11356-022-24101-6.
- Arroyo, M.G., Pérez-Herranz, V., Montañés, M.T., García-Antón, J. & Guiñón, J.L. (2009). Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. J. Hazard. Mater. 169(1-3), 1127–1133. DOI: 10.1016/j.jhazmat.2009.04.089.
- Chen, G., Chen, X. & Yue, PL. (2000). E Lectrocoagulation and E Lectroflotation. J Environ Eng. 126(September), 858–863.
- Uhlig, H.H. & Revie, R.W. (2000). Uhlig’s Corrosion Handbook.
- Comninellis, C. & Chen, G. (2010). Electrochemistry for the Environment. 2015.
- Graça, N.S., Ribeiro, A.M. & Rodrigues, A.E. (2019). Modeling the electrocoagulation process for the treatment of contaminated water. Chem. Eng. Sci. 197, 379–385. DOI: 10.1016/j.ces.2018.12.038.
- Tiaiba, M., Merzouk, B., Amour, A., Mazour, M., Leclerc, J.P. & Lapicque, F. (2017). Influence of electrodes connection mode and type of current in electrocoagulation process on the removal of a textile dye. Desalin Water Treat. 73, 330–338. DOI: 10.5004/DWT.2017.20502.
- Safwat, S.M. (2020). Treatment of real printing waste-water using electrocoagulation process with titanium and zinc electrodes. J. Water Process Eng. 34(January), 101137. DOI: 10.1016/j.jwpe.2020.101137.
- Safwat, S.M., Hamed, A. & Rozaik, E. (2019). Electrocoagulation/electroflotation of real printing wastewater using copper electrodes: A comparative study with aluminum electrodes. Sep. Sci. Technol. 54(1),183–194. DOI: 10.1080/01496395.2018.1494744.
- Medina Collana, J.T., Ayllon Ormeño, M. & Julca Meza, C. Processes Coupled to Electrocoagulation for the Treatment of Distillery Wastewaters. Sustain. 16(15). DOI: 10.3390/su16156383.
- Al-Kilani, M.R. & Bani-Melhem, K. (2025). The performance of electrocoagulation process for decolorization and COD removal of highly colored real grey water under variable operating conditions. Desalin Water Treat. 321 (November 2024), 100924. DOI: 10.1016/j.dwt.2024.100924.
- Al-Raad, A.A. & Hanafiah, M.M. (2021). Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms. J. Environ Manage. 300 (February), 113696. DOI: 10.1016/j.jenvman.2021.113696.
- Attour, A., Touati, M., Tlili, M., Ben Amor, M., Lapicque, F. & Leclerc, JP.(2014). Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep. Purif. Technol. 123, 124–129. DOI: 10.1016/j.seppur.2013.12.030.
- Vasudevan, S., Lakshmi, J. & Sozhan, G. (2012). Toxicological & Environmental Chemistry Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation. Toxicol Environ. Chem. 94 (December 2012), 37–41.
- Vepsäläinen, M., Ghiasvand, M. & Selin, J. (2009). Investigations of the effects of temperature and initial sample pH on natural organic matter (NOM) removal with electro-coagulation using response surface method (RSM). Sep. Purif. Technol. 69(3), 255–261. DOI: 10.1016/j.seppur.2009.08.001.
- Song, S., He, Z., Qiu, J., Xu, L. & Chen, J. (2007). Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters. Sep. Purif. Technol. 55(2), 238–245. DOI: 10.1016/j.seppur.2006.12.013.
- El-Naas, M.H., Al-Zuhair, S., Al-Lobaney, A. & Makhlouf, S. (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J. Environ. Manage. 91(1), 180–185. DOI: 10.1016/j.jenvman.2009.08.003.
- Khandegar, V. & Saroha, A.K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. J. Environ. Manage. 128, 949–963. DOI: 10.1016/j.jenvman.2013.06.043.
- Shaban, A., Basiouny, M.E. & AboSiada, O.A. (2024). Comparative study of the removal of urea by electrocoagulation and electrocoagulation combined with chemical coagulation in aqueous effluents. Sci. Rep. 14(1), 1–14. DOI: 10.1038/s41598-024-81422-x.
- Hassan, K., Farzana, R. & Sahajwalla, V. (2019). In-situ fabrication of ZnO thin film electrode using spent Zn–C battery and its electrochemical performance for supercapacitance. SN Appl. Sci. 1(4),1–13. DOI: 10.1007/s42452-019-0302-1.
- Medvidović, N.V., Vrsalović, L., Svilović, S., Bilušić, A. & Jozić, D. (2023). Electrocoagulation treatment of compost leachate using aluminium alloy, carbon steel and zinc anode. Appl. Surf. Sci. Adv. 15 (December 2022). DOI: 10.1016/j.apsadv.2023.100404.
- Kuchar, D., Fukuta, T., Onyango, M.S. & Matsuda, H. (2006). Sulfidation of zinc plating sludge with Na2S for zinc resource recovery. J. Hazard. Mater. 137(1), 185–191. DOI: 10.1016/j.jhazmat.2006.01.052.
- Xu, Z., Ma, X., Liao, J., Osman, S.M., Wu, S. & Luque, R. (2022). Effects on the Physicochemical Properties of Hydrochar Originating from Deep Eutectic Solvent (Urea and ZnCl2)-Assisted Hydrothermal Carbonization of Sewage Sludge. ACS Sustain. Chem. Eng. 10(13), 4258–4268. DOI: 10.1021/acssuschemeng.2c00086.
- Nguyen, M.D., Thomas, M., Surapaneni, A., Moon, E.M. & Milne, N.A. (2022). Beneficial reuse of water treatment sludge in the context of circular economy. Environ. Technol. Innov. 28, 102651. DOI: 10.1016/j.eti.2022.102651.
- Rodriguez, N., Gijsemans, L. & Bussé, J. (2020). Selective Removal of Zinc from BOF Sludge by Leaching with Mixtures of Ammonia and Ammonium Carbonate. J. Sustain Metall. 6(4), 680–690. DOI: 10.1007/s40831-020-00305-3.
- Liu, S.H. & Wang, H.P. (2008). Fate of zinc in an electro-plating sludge during electrokinetic treatments. Chemosphere. 72(11), 1734–1738. DOI: 10.1016/j.chemosphere.2008.04.077.
- Hegazy, B.E. (2007). Brick making from water treatment plant sludge. J. Eng. Appl. Sci. 54(6), 599–615.