Have a personal or library account? Click to login
Advances in intrinsically self-healing solid polymer electrolytes for lithiumion batteries. Review article. Cover

Advances in intrinsically self-healing solid polymer electrolytes for lithiumion batteries. Review article.

Open Access
|Dec 2025

References

  1. Goodenough, J.B. & Park, K.S. (2013). The Lithium ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167−1176. DOI: 10.1021/ja3091438.
  2. Whittingham, M.S. (2020). Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 20(12), 8435−8437. DOI: 10.1021/acs.nanolett.0c04347.
  3. Li, Q., Li, Q., Wang, F., Xu, N., Wang, Y. & Bai, B. (2025). Settling behavior and mechanism analysis of kaolinite as a fracture proppant of hydrocarbon reservoirs in CO2 fracturing fluid. Colloids Surf. A, 724, 137463. DOI: 10.1016/j.colsurfa.2025.137463.
  4. Li, Q., Wu, J., Li, Q., Wang, F. & Cheng, Y. (2025). Sediment Instability Caused by Gas Production from Hydrate--Bearing Sediment in Northern South China Sea by Horizontal Wellbore: Sensitivity Analysis. Nat. Resour. Res. 34, 1667–1699. DOI: 10.1007/s11053-025-10478-x.
  5. Lin, Y., Liu, K., Wu, M., Zhao, C. & Zhao, T. (2020). Enabling solid-state Li metal batteries by in situ forming ionogel interlayers. ACS Appl. Energy Mater. 3(6), 5712–5721. DOI: 10.1021/acsaem.0c00662.
  6. Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. (2018). Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820. DOI: 10.1126/sciadv.aas9820.
  7. Fan, R., Liu, C., He, K., Ho-Sum Cheng, S., Chen, D., Liao, C., Li, R., Tang, J. & Lu, Z. (2020). Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces, 12(6), 7222–7231. DOI: 10.1021/acsami.9b20104.
  8. Zhang, X., Liu, S., Sun, Y., Gao, L., Chen, K., Dong, F., Sun, H., Xie, H. & Liu, J. (2024). Surface Coordination of Garnet Fillers Improves the Organic–Inorganic Interfacial Compatibility of Composite Solid Electrolyte. Small, 20(51), 2405909. DOI: 10.1002/smll.202405909.
  9. Guo, J., Xu, H., Sun, Y., Chen, K., Zhang, X., Xie, H., Jiang, Y. & Liu, J. (2024). Borate-containing triblock copolymer electrolytes for improved lithium-ion transference number and interface stability. J. Colloid Interface Sci. 660, 565−573. DOI: 10.1016/j.jcis.2024.01.097.
  10. Sun, W., Ma, C., Dong, F., Zhang, X., Sun, Y., Chen, K., Xie, H. & Liu, J. (2024). Poly (lactic acid) block improves ambient-temperature ionic conductivity of pentablock copolymer electrolyte. J. Power Sources, 591, 233901. DOI: 0.1016/j.jpowsour.2023.233901.
  11. Sun, Y., Zhang, X., Xu, P., Liu, Y., Dong, F., Ma, C., Liu, J. & Xie, H. (2023). Perfluoropolyether-based block copolymer electrolytes enabling high-temperature-resistant solid-state lithium metal batteries. J. Power Sources, 561, 232751. DOI: 10.1016/j.jpowsour.2023.232751.
  12. Utrera-Barrios, S., Verdejo, R., López-Manchado, M.A. & Santana, M.H. (2020). Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review. Mater. Horiz. 7(11), 2882−2902. DOI: DOI: 10.1039/D0MH00535E.
  13. Malinskii, Y.M., Prokopenko, V.V., Ivanova, N.A. & Kargin, V.S. (1970). Investigation of self-healing of cracks in polymers: 2. Effect of molecular weight of a polymer and the environment on self-healing of cracks in polyvinyl acetate. Polym. Mech. 6(3), 382−384. DOI: 10.1007/BF00858197.
  14. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N. & Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409(6822), 794−797. DOI: 10.1038/35057232.
  15. Zong, C., Zhao, Y., Ji, H., Xie, J., Han, X., Wang, J., Cao, Y., Lu, C., Li, H. & Jiang, S. (2016). Patterning surfaces on azo-based multilayer films via surface wrinkling combined with visible light irradiation. Macromol. Rapid Commun. 37(15), 1288−1294. DOI: 10.1002/marc.201600229.
  16. Wang, S. & Urban, M.W. (2020). Self-healing polymers. Nat. Rev. Mater. 5(8), 562−583. DOI: 10.1038/s41578-020-0202-4.
  17. Yang, Y. & Urban, M.W. (2013). Self-healing polymeric materials. Chem. Soc. Rev. 42(17), 7446−7467. DOI: 10.1039/C3CS60109A.
  18. Chen, X.X., Zhong, Q.Y., Wang, S.J., Wu, Y.S., Tan, J.D., Lei, H.X., Huang, S.Y. & Zhang, Y. F. (2019). Progress in dynamic covalent polymers. Acta Polym. Sin. 50(5), 469−484. DOI: 10.11777/j.issn1000-3304.2019.18277.
  19. Mai, W., Yu, Q., Han, C., Kang, F. & Li, B. (2020). Self-healing materials for energy-storage devices. Adv. Funct. Mater. 30(24), 1909912. DOI: 10.1002/adfm.201909912.
  20. Xu, J., Ding, C., Chen, P., Tan, L., Chen, C. & Fu, J. (2020). Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Appl. Phys. Rev. 7(3), 031304. DOI: 10.1063/5.0008206.
  21. He, M., Chen, X., Liu, D. & Wei, D. (2019). Two-dimensional self-healing hydrogen-bond-based supramolecular polymer film. Chin. Chem. Lett. 30(5), 961−965. DOI: 10.1016/j.cclet.2019.01.008.
  22. Kim, S., Park, S., Kim, M. S., Lee, H., Lee, H., Lee, K. H. & Kim, M. (2024). Supramolecular Association of a Block Copolymer via Strong Hydrogen Bonding to Form Self-Healable Ionogels. ACS Appl. Mater. Interfaces, 16(38), 51459−51468. DOI: 10.1021/acsami.4c09988.
  23. Buaksuntear, K., Limarun, P., Suethao, S. & Smitthipong, W. (2022). Non-covalent interaction on the self-healing of mechanical properties in supramolecular polymers. Int. J. Mol. Sci. 23(13), 6902. DOI: 10.3390/ijms23136902.
  24. Zhou, B., He, D., Hu, J., Ye, Y., Peng, H., Zhou, X. & Xue, Z. (2018). A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonds for lithiumion batteries. J. Mater. Chem. A, 6(25), 11725−11733. DOI: 10.1039/C8TA01907J.
  25. Zhou, B., Zuo, C., Xiao, Z., Zhou, X., He, D., Xie, X. & Xue, Z. (2018). Self-healing polymer electrolytes formed via dual-networks: a new strategy for flexible lithium metal batteries. Chem. Eur. J. 24(72), 19200−19207. DOI: 10.1002/chem.201803943.
  26. Zhou, B., Jo, Y. H., Wang, R., He, D., Zhou, X., Xie, X. & Xue, Z. (2019). Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries. J. Mater. Chem. A, 7(17), 10354−10362. DOI: 10.1039/C9TA01214A.
  27. Wu, N., Shi, Y. R., Lang, S. Y., Zhou, J. M., Liang, J. Y., Wang, W., Tan, S., Yin, Y., Wen, R. & Guo, Y. G. (2019). Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem. Int. Ed. 58(50), 18146−18149. DOI: 10.1002/anie.201910478.
  28. Zhu, M., Wu, J., Wang, Y., Song, M., Long, L., Siyal, S. H., Yang, X. P. & Sui, G. (2019). Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126−142. DOI: 10.1016/j.jechem.2018.12.013.
  29. Xia, S., Lopez, J., Liang, C., Zhang, Z., Bao, Z., Cui, Y. & Liu, W. (2019). High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv. Sci. 6(9), 1802353. DOI: 10.1002/advs.201802353.
  30. Jaumaux, P., Liu, Q., Zhou, D., Xu, X., Wang, T., Wang, Y., Kang, F., Li, B. & Wang, G. (2020). Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem. Int. Ed. 59(23), 9134−9142. DOI: 10.1002/anie.202001793.
  31. Wang, C., Li, Y., Cao, F., Zhang, Y., Xia, X. & Zhang, L. (2022). Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium–sulfur batteries. ACS Appl. Mater. Interfaces, 14(8), 10457−10466. DOI: 10.1021/acsami.1c24755.
  32. Shan, X., Zhong, Y., Zhang, L., Zhang, Y., Xia, X., Wang, X. & Tu, J. (2021). A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C, 125(35), 19060−19080. DOI: 10.1021/acs.jpcc.1c06277.
  33. Li, Z., Fu, J., Zheng, S., Li, D. & Guo, X. (2022). Self-Healing Polymer Electrolyte for Dendrite-Free Li Metal Batteries with Ultra-High-Voltage Ni-Rich Layered Cathodes. Small, 18(17), 2200891. DOI: 10.1002/smll.202200891.
  34. Ren, Y., Cui, Z., Bhargav, A., He, J. & Manthiram, A. (2022). A self-healable sulfide/polymer composite electrolyte for long-life, low-lithium-excess lithium-metal batteries. Adv. Funct. Mater. 32(2), 2106680. DOI: 10.1002/adfm.202106680.
  35. Wang, Y., Song, L.N., Wang, X.X., Wang, Y.F. & Xu, J.J. (2024). Hydrogen-Bonded Organic Frameworks-based Electrolytes with Controllable Hydrogen Bonding Networks for Solid-State Lithium Batteries. Angew. Chem. Int. Ed. 63(41), e202401910. DOI: 10.1002/anie.202401910.
  36. Sun, Q., Cao, Z., Ma, Z., Zhang, J., Cheng, H., Guo, X., Park, G., Li, Q., Xie, E., Cavallo, L., Sun, Y. & Ming, J. (2022). Dipole–dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries. ACS Energy Lett. 7(10), 3545−3556. DOI: 10.1021/acsenergylett.2c01408.
  37. Ming, X., Du, J., Zhang, C., Zhou, M., Cheng, G., Zhu, H., Zhang, Q. & Zhu, S. (2021). All-solid-state self-healing ionic conductors enabled by ion–dipole interactions within fluorinated poly (ionic liquid) copolymers. ACS Appl. Mater. Interfaces, 13(34), 41140−41148. DOI: 10.1021/acsami.1c12880.
  38. Wang, S. & Urban, M.W. (2021). Self-Healable Fluorinated Copolymers Governed by Dipolar Interactions. Adv. Sci. 8(17), 2101399. DOI: 10.1002/advs.202101399.
  39. Wang, L., Gao, G., Zhou, Y., Xu, T., Chen, J., Wang, R., Zhang, R. & Fu, J. (2018). Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces, 11(3), 3506−3515. DOI: 10.1002/advs.202101399.
  40. Chen, T., Kong, W., Zhang, Z., Wang, L., Hu, Y., Zhu, G., Chen, R., Ma, L., Yan, W., Wang, Y., Liu, J. & Jin, Z. (2018). Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 54, 17−25. DOI: 10.1016/j.nanoen.2018.09.059.
  41. Wang, C., Li, R., Chen, P., Fu, Y., Ma, X., Shen, T., Zhou, B., Chen, K., Fu, J., Bao, X., Yan, W. & Yang, Y. (2021). Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A, 9(8), 4758−4769. DOI: 10.1039/D0TA10745J.
  42. D’Angelo, A.J. & Panzer, M.J. (2019). Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem. Mater. 31(8), 2913−2922. DOI: 10.1021/acs.chemmater.9b00172.
  43. Gao, L., Jiang, W., Zhang, X., Sun, Y., Chen, K., Li, W., Zhang, S. & Liu, J. (2024). A self-healing poly (ionic liquid) block copolymer electrolyte enabled by synergetic dual ion-dipole interactions. Chem. Engin. J., 479, 147822. DOI: 10.1016/j.cej.2023.147822.
  44. Özenler, S., Kiriy, N., Muza, U.L., Geisler, M., Kiriy, A. & Voit, B. (2025). Mechanically stable polymer networks incorporating polymeric ionic liquids for enhanced conductivity in solid-state electrolytes. Des. Monomers Polym. 28(1), 35−47. DOI: 10.1080/15685551.2024.2449444.
  45. Min, J., Zhou, Z. & Fu, H. (2023). A self-healing electrostatic interaction crosslinked temperature sensitive conductive hydrogel for strain and temperature sensor. Polym. Adv. Technol. 34(7), 2384−2393. DOI: 10.1002/pat.6058.
  46. Pu, W., Jiang, F., Chen, P. & Wei, B. (2017). A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction. Soft Matter, 13(34), 5645−5648. DOI: 10.1039/c7sm01492a.
  47. Liu, F., Wang, J., Chen, W., Yuan, M., Wang, Q., Ke, R., Zhang, G., Chang, J., Wang, C., Deng, Y., Wang, J. & Shao, M. (2024). Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries. Adv. Mater. 36(45), 2409838. DOI: 10.1002/adma.202409838.
  48. Guo, P., Su, A., Wei, Y., Liu, X., Li, Y., Guo, F., Li, J., Hu, Z. & Sun, J. (2019). Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces, 11(21), 19413−19420. DOI: 10.1021/acsami.9b02182.
  49. Li, R., Fang, Z., Wang, C., Zhu, X., Fu, X., Fu, J., Yan, W. & Yang, Y. (2022). Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem. Eng. J. 430, 132706. DOI: 10.1016/j.cej.2021.132706.
  50. Chao, A., Negulescu, I. & Zhang, D. (2016). Dynamic covalent polymer networks based on degenerative Imine bonds exchange: tuning the malleability and self-healing properties by solvent. Macromolecules, 49(17), 6277−6284. DOI: 10.1021/acs.macromol.6b01443.
  51. Zhang, L., Zhang, P., Chang, C., Guo, W., Guo, Z.H. & Pu, X. (2021). Self-healing solid polymer electrolyte for room-temperature solid-state lithium metal batteries. ACS Appl. Mater. Interfaces, 13(39), 46794−46802. DOI: 10.1021/acsami.1c14462.
  52. Deng, K., Zhou, S., Xu, Z., Xiao, M. & Meng, Y. (2022). A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic Imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 428, 131224. DOI: 10.1016/j.cej.2021.131224.
  53. Gu, W., Li, F., Liu, T., Gong, S., Gao, Q., Li, J. & Fang, Z. (2022). Recyclable, Self-Healing Solid Polymer Electrolytes by Soy Protein-Based Dynamic Network. Adv. Sci. 9(11), 2103623. DOI: 10.1002/advs.202103623.
  54. Cao, X., Zhang, P., Guo, N., Tong, Y., Xu, Q., Zhou, D. & Feng, Z. (2021). Self-healing solid polymer electrolyte based on imine bonds for high safety and stable lithium metal batteries. RSC Adv. 11(5), 2985−2994. DOI: 10.1039/D0RA10035H.
  55. Deng, Y., Zhang, Q., Qu, D. H., Tian, H. & Feringa, B. L. (2022). A chemically recyclable crosslinked polymer network enabled by orthogonal dynamic covalent chemistry. Angew. Chem. Int. Ed. 134(39), e202209100. DOI: 10.1002/anie.202209100.
  56. Zhang, L. S., Li, J., Wang, F., Shi, J.D., Chen, W. & Tao, X.M. (2021). Flexible stimuli-responsive materials for smart personal protective equipment. Mater. Sci. Eng. R Rep. 146, 100629. DOI: 10.1016/j.mser.2021.100629.
  57. Zhang, L., Qiu, T., Zhu, Z., Guo, L. & Li, X. (2018). Self-healing Polycaprolactone networks through thermo-induced reversible disulfide bond formation. Macromol. Rapid Commun. 39(20), 1800121. DOI: 10.1002/marc.201800121.
  58. Sun, Z., Wu, J., Yuan, H., Lan, J., Yu, Y., Zhu, Y. & Yang, X. (2022). Self-healing polymer electrolyte for long-life and recyclable lithium-metal batteries. Mater. Today Energy, 24, 100939. DOI: 10.1016/j.mtener.2021.100939.
  59. Wang, X., Cao, L., Xu, C., Fan, B., Lin, Z., Li, W. & Zhang, P. (2022). Novel dual dynamic boronate ester bond regulated bio-based polymer with rapid self-healing and multiple recyclability. Ind. Crops Prod. 189, 115855. DOI: 10.1016/j.indcrop.2022.115855.
  60. Jing, B.B. & Evans, C.M. (2019). Catalyst-free dynamic networks for recyclable, self-healing solid polymer electrolytes. J. Am. Chem. Soc. 141(48), 18932−18937. DOI: 10.1021/jacs.9b09811.
  61. Kang, E., Hwang, J., Kim, S., Seo, J., Cho, K.Y. & Chang, Y.W. (2025). A Tough and Self-Healable Semi-IPN Hydrogel Binder Based on Multiple Dynamic Bonds for Si Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces, 17(20), 30054−30066. DOI: 10.1021/acsami.5c03382.
  62. Huang, S., Kong, X., Xiong, Y., Zhang, X., Chen, H., Jiang, W., Niu, Y., Xu, W. & Ren, C. (2020). An overview of dynamic covalent bonds in polymer material and their applications. Eur. Polym. J. 141, 110094. DOI: 10.1016/j.eurpolymj.2020.110094.
  63. Li, Z., Yu, R. & Guo, B. (2021). Shape-memory and self-healing polymers based on dynamic covalent bonds and dynamic noncovalent interactions: synthesis, mechanism, and application. ACS Appl. Bio Mater. 4(8), 5926−5943. DOI: 10.1021/acsabm.1c00606.
  64. Hatai, J., Hirschhä user, C., Niemeyer, J. & Schmuck, C. (2019). Multi-stimuli-responsive supramolecular polymers based on noncovalent and dynamic covalent bonds. ACS Appl. Mater. Interfaces, 12(2), 2107−2115. DOI: 10.1021/acsami.9b19279.
  65. Jo, Y. H., Li, S., Zuo, C., Zhang, Y., Gan, H., Li, S., Yu, L., He, D., Xie, X. & Xue, Z. (2020). Self-healing solid polymer electrolyte facilitated by a dynamic cross-linked polymer matrix for lithium-ion batteries. Macromolecules, 53(3), 1024−1032. DOI: 10.1021/acs.macromol.9b02305.
  66. Chen, K., Sun, Y., Zhang, X., Liu, J. & Xie, H. (2023). A Self-Healing and Nonflammable Cross-Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries. Energy Environ. Mater. 6(4), e12568. DOI: 10.1002/eem2.12568.
  67. Chen, K., Liu, J., Zhang, X., Sun, Y. & Xie, H. (2024). Three-dimensional cross-linked network deep eutectic gel polymer electrolyte with the self-healing ability enable by hydrogen bonds and dynamic disulfide bonds. J. Colloid Interface Sci. 669, 529−536. DOI: 10.1016/j.jcis.2024.05.015.
  68. Jiang, Y., Chen, K., He, J., Sun, Y., Zhang, X., Yang, X., Xie, H & Liu, J. (2025). A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J. Colloid Interface Sci. 678, 200−209. DOI: 10.1016/j.jcis.2024.09.119.
Language: English
Page range: 1 - 19
Submitted on: May 20, 2025
|
Accepted on: Sep 17, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Qian Rao, Yuxue Sun, Haiming Xie, Jun Liu, Xuecheng Chen, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.