Have a personal or library account? Click to login
Study on photocatalytic degradation and antibacterial properties of TiO2/CS composite Cover

Study on photocatalytic degradation and antibacterial properties of TiO2/CS composite

Open Access
|Jul 2025

References

  1. Sun, Y., Yang, T. & Wang, C. Capparis spinosa L. (2023). Capparis spinosa L. as a potential source of nutrition and its health benefits in foods: A comprehensive review of its phytochemistry, bioactivities, safety, and application. Food Chem. 409, 135258. DOI:10.1016/j.foodchem.2022.135258.
  2. E l-Subeyhi, M., Hamid, L.L. & Gayadh, E.W. (2024). A comprehensive review of its phytochemistry, bioactivities, safety, and application. Indian J. Microbiol. 64(2), 548–557. DOI:10.1007/s12088-024-01190-0.
  3. Benakashani, F., Allafchian, A.R. & Jalali, S.A.H. (2016). Biosynthesis of silver nanoparticles using capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci. 2(4), 251–258. DOI:10.1016/j.kijoms.2016.08.004.
  4. Mansou,r R.B., Jilani, I.B.H. & Bouaziz, M. (2016). Phenolic contents and antioxidant activity of ethanolic extract of Capparis spinosa. Cytotechnology 68, 135–142. DOI:10.1007/s10616-014-9764-6.
  5. Eid, A. M., Hawash, M. & Abualhasan, M. (2023). Exploring the potent anticancer, antimicrobial, and anti-Inflammatory effects of capparis spinosa oil na noemulgel. Coatings 13(8), 1441. DOI:10.3390/coatings13081441.
  6. Neamah, S.A., Falih, I.Q. & Albukhaty, S. (2024). Phytochemical characteristic analysis and biological activity for capparis spinosa L. fruit extract. Rafidain J. Sci. 33(1), 68–77. DOI:10.1021/acsomega.3c08314.
  7. Xu, Q. & Liu, Z. (2023). Studies on photocatalytic degradation for organic pollutants by TiO2/Au composite and its antibacterial properties. Theor. Found. Chem. Eng. 57(6), 1610-1617. DOI: 10.1134/S0040579523330114.
  8. Tang, X., Abdiryim, T. & Jamal, R. (2024). Pyro-phototronic effect enhanced the performance of TiO2 NRs/BiOCl//PEDOS heterojunction for a UV photodetector. Chem. Eng. J. 488, 150940. DOI: 10.1016/j.cej.2024.150940.
  9. Aslam, M., Abdullah, A.Z. & Rafatullah M. (2022). Abelmoschus esculentus (Okra) seed extract for stabilization of the biosynthesized TiO2 photocatalyst used for degradation of stable organic substance in water. Environ. Sci. Pollut. 29(27), 41053–41064. DOI: 10.1007/s11356-021-18066-1.
  10. Low, J., Zhang, L. & Tong, T. (2018). TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266. DOI: 10.1016/j.jcat.2018.03.009.
  11. Li, J., Liu, X. & Zhao, G. (2023). Piezoelectric materials and techniques for environmental pollution remediation. Sci. Total Environ. 869, 161767. DOI:10.1016/j.scitotenv.2023.161767.
  12. Wu M., Zhang M. & Shen L. (2023). High propensity of membrane fouling and the underlying mechanisms in a membrane bioreactor during occurrence of sludge bulking. Water Res. 229, 119456. DOI: 10.1016/j.watres.2022.119456.
  13. Wu, Q., Huang, J.Y. & Cao, R. (2022). Thermo-, electro-, and photocatalytic CO2 conversion to value-added products over porous metal/covalent organic frameworks. Acc. Chem. Res. 55 (20), 2978–2997. DOI: 10.1021/acs.accounts.2c00326.
  14. GB 18466-2005. Discharge standard of water pollutants for medical organization. Beijing China, China Environmental Science Press, 2005.
  15. Sawal, M.H., Jalil, A.A. & Khusnun, N.F. (2023). A review of recent modification strategies of TiO2-based photoanodes for efficient photoelectrochemical water splitting performance. Electrochim. Acta 143142. DOI: 10.1016/j.electacta.2023.143142.
  16. Sandhu, S., Kaur, M. & Sharma, N. (2022). Tailoring the exposed facets of anatase titania and probing their correlation with photocatalytic activity-an experimental and statistical study. Catal. Sci. Technol. 12, 6717. DOI:10.1039/D2CY00788F.
  17. Zhang, Y., Lei, L. & Plank, J. (2023). Boosting the performance of low-carbon alkali activated slag with APEG PCEs: a comparison with ordinary Portland cement. J. Sustain. Cem. 12(11), 1347-1359. DOI:10.1080/21650373.2023.2219253.
  18. Govindappa, M., Vishaka, A. & Akshatha, B.S. (2023). An endophytic fungus, Penicillium simplicissimum conjugated with C60 fullerene for its potential antimitotic, anti-inflammatory, anticancer and photodegradation activities. Environ. Technol. 44(6), 817–831. DOI: 10.1080/09593330.2021.1985621.
  19. Tahir, N., Zahid, M. & Jillani, A. (2023). Impact of alternate Mn doping in ternary nanocomposites on their structural, optical and antimicrobial properties: comparative analysis of photocatalytic degradation and antibacterial activity. J. Environ. Manage. 337, 117706. DOI: 10.1016/j.jenvman.2023.117706.
  20. Wang, L., Xin, M., Li, M., Liu, W. & Mao, Y. (2023). Effect of the structure of chitosan quaternary phosphonium salt and chitosan quaternary ammonium salt on the antibacterial and antibiofilm activity. Int. J. Biol. Macromol., 242, 124877. DOI: 10.1016/j.ijbiomac.2023.124877.
  21. Vadakkan, K., Rumjit, N.P., Ngangbam, A.K., Vijayanand, S. & Nedumpillil, N.K. (2024). Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications. Coord. Chem. Rev., 499, 215528. DOI: 10.1016/j.ccr.2023.215528.
  22. Xu, Q., Wang, Y. & Chi, M. (2020) Porous polymer-titanium dioxide/copper composite with improved photocatalytic activity toward degradation of organic pollutants in wastewater: fabrication and characterization as well as photocatalytic activity evaluation. Catalysts 10(3), 310. DOI: 10.3390/catal10030310.
  23. Liu, Z., Yin, H. & Liu, H. (2024). Antibacterial and photocatalytic degradation properties of TiO2-based composite. Anal. Chem. 104(14), 3295–3302. DOI: 10.1080/03067319.2022.2081080.
  24. Sabir, A., Sherazi, T. A. & Xu, Q. (2021). Porous polymer supported Ag-TiO2 as green photocatalyst for degradation of methyl orange. Surf. Interfaces 26, 101318. DOI: 10.1016/j. surfin.2021.101318.
  25. Abuzeyad, O.H., El-Khawaga, A.M. & Tantawy, H. (2023). An evaluation of the improved catalytic performance of rGO/GO-hybrid-nanomaterials in photocatalytic degradation and antibacterial activity processes for wastewater treatment: A review. J. Mol. Struct. 1288, 135787. DOI: 10.1016/j. molstruc.2023.135787.
Language: English
Page range: 41 - 45
Published on: Jul 17, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Peng Hu, Xiangxiang Wang, Cheng Xu, Mengxi Zhao, Qijie Xu, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.