References
- Mignon, A., Snoeck, D., Dubruel, P., Van Vlierberghe, S. & De Belie, N. (2017). Crack mitigation in concrete: Super-absorbent polymers as key to success? Materials, 10(3), 237. DOI: 10.3390/ma10030237.
- Yunovich, M. & Thompson, N.G. (2003). Corrosion of highway bridges: Economic impact and control methodologies. Concr. Int., 25(1), 52–57.
- Bettigole, N. (1994). Rebuilding our bridges--why and how. ASTM Standardization News, 22(7).
- Xincheng, P. (2012). Super-high-strength high performance concrete. CRC Press.
- Dehwah, H.A.F. (1990). Durability of reinforced concrete beams repaired with various repair materials. King Fahd University of Petroleum and Minerals (Saudi Arabia).
- Lin, X., Li, W., Castel, A., Kim, T., Huang, Y., Wang, K. (2023). A comprehensive review on self-healing cementitious composites with crystalline admixtures: Design, performance and application. Constr. Build. Mater., 409, 134108. DOI: 10.1016/j.conbuildmat.2023.134108.
- Gruber, D., Ruiz-Agudo, C., Rao, A., Pasler, S., Cölfen, H. & Sturm, E.V. (2024). Complex coacervates: From polyelectrolyte solutions to multifunctional hydrogels for bioinspired crystallization. Crystals, 14(11), 959. DOI: 10.3390/cryst14110959.
- Fernandes, J.F., Futai, M.M., Figueiredo, A.D.D. & Aoki, I.V. (2024). Non-destructive tests for performance evaluation of self-healing concrete by addition of methyl methacrylate--containing microcapsules. Revista IBRACON de Estruturas e Materiais, 17(2), 1–14. DOI: 10.1590/S1983-41952024000200006.
- Huang, H. & Ye, G. (2012). Simulation of self-healing by further hydration in cementitious materials. Cem. Concr. Compos., 34(4), 460–467. DOI: 10.1016/j.cemconcomp.2012.01.003.
- Rule, J.D., Sottos, N.R. & White, S.R. (2007). Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48(12), 3520–3529. DOI: 10.1016/j.polymer.2007.04.008.
- Yang, S., Zhang, S. & Niu, L. (2024). Influence of super-absorbent polymers on self-healing of cement-based materials containing magnesium oxide expansive agents. Ind. Eng. Chem. Res., 63(34), 15151–15164. DOI: 10.1021/acs.iecr.4c02118.
- Li, J., Bai, S. & Guan, X. (2024). Development optimization and performance evaluation of mineral capsules based on magnesium oxide expansive agent. J. Build. Eng., 86, 108825. DOI: 10.1016/j.jobe.2024.108825.
- Liu, Y., Zhou, L., Wan, X., Tang, Y., Liu, Q., Li, W. & Liao, J. (2024). Synthesis and Characterization of a Temperature-Sensitive Microcapsule Gelling Agent for High-Temperature Acid Release. ACS omega, 9(19), 20849–20858. DOI: 10.1021/acsomega.3c09586.
- Qian, H., Umar, M., Nasir Ayaz Khan, M., Shi, Y., Manan, A., Raza, A., Li, F., Li, Z. & Chen, G. (2024). A state--of-the-art review on shape memory alloys (sma) in concrete: Mechanical properties, self-healing capabilities, and hybrid composite fabrication. Mater. Today Commun., 40, 109738. DOI: 10.1016/j.mtcomm.2024.109738.
- Xu, R., Liao, L., Liang, W., Wang, H., Zhou, Q., Liu, W., Chen, M., Fang, B., Wu, D., Jin, H., Li, Y., Zou, S. & Lu, L. (2025). Fast Removing Ligands from Platinum-Based Nano-catalysts by a Square-Wave Potential Strategy. Angew. Chem. Int. Ed. Engl., 5, e202509746. DOI: 10.1002/anie.202509746.
- Sun, Y., Wang, D., Wang, Z., Han, Z., Zhang, H., Ma, S. & Kong, X. (2024). Preparation and experimental study of corrosion-induced shape-memory fibers for crack repair. Constr. Build. Mater., 457, 139349. DOI: 10.1016/j.conbuildmat.2024.139349.
- Torkian, P., Baseri, H. & Karevan, M. (2024). Thermomechanical performance of polyester-based composites reinforced with polypropylene microfibers and carbon black nanoparticles. J. Mater. Engin. Perfor., 1-20. DOI: 10.1007/s11665-024-10335-7.
- Ghazouani, N., Raza, A. & Elhag, A.B. (2025). Synergistic effects of sma fibers and fly ash on the material characterization of recycled aggregate concrete. Materials Letters, 379, 137670. DOI: 10.1016/j.matlet.2024.137670.
- Qian, C., Ren, L. & Luo, M. (2015). Development of concrete surface defects and cracks repair technology based on microbial-induced mineralization. J. Chin. Ceramic Soc., 43, 619–631.
- Talaiekhozani, A., Keyvanfar, A., Andalib, R., Samadi, M., Shafaghat, A., Kamyab, H., Abd Majid, M., Zin, R.M., Fulazzaky, M.A. & Lee, C.T. (2014). Application of proteus mirabilis and proteus vulgaris mixture to design self-healing concrete. Desalin. Water Treat., 52(19–21), 3623–3630. DOI: 10.1080/19443994.2013.854092.
- Wang, R., Yu, J., Gu, S., He, P., Han, X. & Liu, Q. (2020). Investigation of self-healing capability on surface and internal cracks of cement mortar with ion chelator. Constr. Build. Mater., 236, 117598. DOI: 10.1016/j.conbuildmat.2019.117598.
- Wang, R., Yu, J., Liu, Q., Kuang, D. & Qiu, H. (2023). Synergistic effect of ion chelating agent and magnesium fluorosilicate on self-repairing ability and microstructure of mortar. Constr. Build. Mater., 383, 131375. DOI: 10.1016/j. conbuildmat.2023.131375.
- Zeng, C. (2007). Preparation and performance study of cement-based crystalline waterproofing agent (Master, Chongqing University).
- Ren, Q., Wang, Q., Wu, Z., Liu, J., Xu, H.-Q., Wang, A., Zhang, X., Zhang, Z. & Ding, Y. (2024). Research on the properties of crystalline admixtures: Self-healing healing materials for concrete from multiple perspectives. Constr. Build. Mater., 453, 139047. DOI: 10.1016/j.conbuildmat.2024.139047.
- Zhang, C. (2022). Study on the self-healing performance of cementitious materials based on ion chelating agents (Ph.D, Harbin Institute of Technology).
- Xia, X. (2022). Research on water self-healing agents for microcracks in oil well cement stone (Master, SouthWest Petroleum University).
- Zhang, C., Ye, J., Liu, C., Guan, X., Li, J., Chen, X. & Yuan, J. (2024). Influence of various ion chelators on mechanical, transport and microstructure properties of cement-based materials. Case Stud. Constr. Mater., 21, e03709. DOI: 10.1016/j. cscm.2024.e03709.
- Peng, Z., Xia, X., Feng, Q., Zheng, Y., Yu, C., Yang, Q. & Liu, X. (2022). Performance of permeable crystalline self-healing agent onmicro-cracks of oil well cement. Arab. J. Sci. Eng., 47(5), 6073–6084. DOI: 10.1016/j.conbuildmat.2024.139047.
- Wu, C.J. & Hamada, M.S. (2011). Experiments: Planning, analysis, and optimization. John Wiley & Sons.
- Li, J., Wen, M., Yang, J., Liu, Y., Jiang, Z. & Chen, J. (2024). Synthesis and analysis of magnetic nanoparticles within foam matrix for foam drainage gas production. Geoenergy Sci. Eng., 238, 212887. DOI: 10.1016/j.geoen.2024.212887.
- Ye, G., Liu, X., De Schutter, G., Poppe, A.M. & Taerwe, L. (2007). Influence of limestone powder used as filler in scc on hydration and microstructure of cement pastes. Cem. Concr. Compos., 29(2), 94–102. DOI: 10.1016/j.cemconcomp.2006.09.003.
- Li, J., Wen, M., Jiang, Z., Xian, L., Liu, J. & Chen, J. (2025). Development and characterization of a surfactant responsive to redox conditions for gas recovery in foam drainage. Sci. Rep., 15(1). DOI: 10.1038/s41598-024-84256-9.
- Wang, Y. (2001). Study on the composition, structure, shrinkage, and compensation of ultra-high-strength and high--performance concrete (Master, Chongqing University).
- Lothenbach, B., Le Saout, G., Haha, M.B., Figi, R. & Wieland, E. (2012). Hydration of a low-alkali cem iii/b–sio2 cement (lac). Cement and Concrete Res., 42(2), 410–423. DOI: 10.1016/j.cemconres.2011.11.008.
- El-Diadamony, H., Amer, A.A., Sokkary, T.M. & El-Hoseny, S. (2018). Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC Journal, 14(2), 150–158. DOI: 10.1016/j.hbrcj.2015.05.005.
- Pane, I. & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Res., 35(6), 1155–1164. DOI: 10.1016/j.cemconres.2004.10.027.
- Guan, W., Ji, F., Chen, Q., Yan, P. & Pei, L. (2013). Synthesis and enhanced phosphate recovery property of porous calcium silicate hydrate using polyethyleneglycol as pore-generation agent. Materials, 6(7), 2846–2861. DOI: 10.3390/ma6072846.
- Tchekwagep Jean Jacques, K., Fengzhen, Y., Shoude, W., Piqi, Z., Shifeng, H. & Xin, C. (2023). Analysis of the phases and functions of the various compounds of calcium sulfoaluminate cement after exposure to high temperature. J. Mater. Res. Technol., 25, 4154–4170. DOI: 10.1016/j.jmrt.2023.06.215.