References
- Harpers, N., Wen, M., Miller, P., Hangx, S. & Busch, A. (2023). The Harpers THMC flow bench: A triaxial multi-reactor setup for the investigation of long-term coupled thermo-hydro--mechanical-chemical fluid-rock interaction. Rev. Sci. Instrum. 94, 095112. DOI: 10.1063/5.0160906.
- Westphal, H., Schmidt, S., Lama, S., Polack, M., Weise, C., Oestereich, T., Warias, R., Gulder, T. & Belder, D. (2024). Development of an automated platform for monitoring micro-fluidic reactors through multi-reactor integration and online (chip-)LC/MS-detection. React. Chem. Eng. 9, 1739. DOI: 10.1039/d4re00004h.
- Allwardt, A., Holzmüller-Laue, S., Wendler, C. & Stoll, N. (2008). A high parallel reaction system for efficient catalyst research. Catal. Today 137(1), 11–16. DOI: 10.1016/j. cattod.2008.03.012.
- Li, Q., Gong, S., Yan, J., Hu, H., Shu, X., Tong, H., Cai, Z. (2020). Synthesis and Kinetics of Hydrogenated Rosin Dodecyl Ester as an Environmentally Friendly Plasticizer. J. Renew. Mater. 8(3), 289–299. DOI: 10.32604/jrm.2020.08897.
- Kalmykova, Y., Sadagopan, M. & Rosado, L. (2018). Circular economy – From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 135, 190–20. DOI: 10.1016/j.resconrec.2017.10.034.
- Zhang, Y. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89(1), 1–16. DOI:10.1016/s0960-8524(03)00040-3.
- Kerr, R.A. (1998). The Next Oil Crisis Looms Large--and Perhaps Close. Science 281(5380), 1128–1131. DOI: 10.1126/science.281.5380.1128.
- Wang, Y., Pengzhan, L.S.O. & Zhang, Z. (2007). Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energ. Convers. Manage. 48(1), 184–188. DOI:10.1016/j. enconman.2006.04.016.
- Liu, C., Provatas, A.A. & Parnas, R.S. (2023). Desulfurization of biodiesel produced from waste fats, oils and grease using β-cyclodextrin. Sep. Purif. Technol. 305, 122417. DOI: 10.1016/j.seppur.2022.122417.
- Fadhil, A.B. & Mohammed, H.M. (2018). Co-solvent transesterification of bitter almond oil into biodiesel: optimization of variables and characterization of biodiesel. Transport 33(3), 686-698. DOI: 10.3846/16484142.2018.1457568.
- Al-Tikrity, E.T.B., Fadhil, A.B. & Ibraheem, K.K. (2017). Biodiesel production from bitter almond oil as new non-edible oil feedstock. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(7), 649–656, DOI: 10.1080/15567036.2016.1243172.
- Altikriti, E.T., Fadhil, A.B. & Dheyab, M.M. (2015). Two-step Base Catalyzed Transesterification of Chicken Fat: Optimization of Parameters, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37(17), 1861–1866, DOI: 10.1080/15567036.2012.654442.
- Arjun, B., Chhetri, K., Watts, Ch. & Islam, M.R. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies 1(1), 3–18. DOI: 10.3390/en1010003.
- Moazeni, F., Chen, Y.C. & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 216, 117–128. DOI: 10.1016/j. jclepro.2019.01.181.
- Šabeder, S., Habulin, M. & Knez, Ž. (2006). Lipasecatalyzed synthesis of fatty acid fructose esters. J. Food Eng. 77(4), 880–886. DOI: 10.1016/j.jfoodeng.2005.08.016.
- Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K. & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem. Eng. J. Adv. 10, 100284. DOI: 10.1016/j. ceja.2022.100284.
- Santori, G., Di Nicola, G., Moglie, M. & Polonara, F. (2012). A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl. Energy 92, 109–132. DOI: 10.1016/j.apenergy.2011.10.031.
- Christopher, L.P., Kumar, H. & Zambare, V.P. (2014). Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 119, 497–520. DOI: 10.1016/j.apenergy.2014.01.017.
- Budžaki, S., Miljić, G., Tišma, M., Sundaram, S. & Hessel, V. (2017). Is there a future for enzymatic biodiesel industrial production in microreactors? Appl. Energy 201, 124–134. DOI: 10.1016/j.apenergy.2017.05.062.
- Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R. & Sulaiman, N.M.N (2012). Production of biodiesel using high free fatty acid feedstocks. Renew. Sustain. Energy Rev. 16(5), 3275–3285. DOI: 10.1016/j.rser.2012.02.063.
- Bouaid, A., Vázquez, R., Martinez, M. & Aracil, J. (2016). Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel 174, 54-–62. DOI: 10.1016/j.fuel.2016.01.018.
- Palanisamy, K., Idlan, M.K. & Saifudin, N. (2013). Preliminary evaluation of the effectiveness of moisture removal and energy usage in pretreatment module of waste cooking oil for biodiesel production. IOP Conf. Ser. Earth Environ. Sci. 16, 012053. DOI: 10.1088/1755-1315/16/1/012053.
- Yuan, X., Liu, J., Zeng, G., Shi, J., Tong, J. & Huang, G. (2008). Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew. Energy 33, 1678–1684. DOI: 10.1016/j.renene.2007.09.007.
- Sendzikiene, E., Santaraite, M. & Makareviciene, V. (2020). Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends. Processes 8, 1118. DOI: 10.3390/pr8091118.
- Karki, S., Sanjel, N., Poudel, J., Hyung Choi, J. & Cheon Oh, S. (2017). Supercritical Transesterification of Waste Vegetable Oil: Characteristic Comparison of Ethanol and Methanol as Solvents. Appl. Sci. 7, 632. DOI: 10.3390/app7060632.
- Mowry, G. (2011). A portable, automated and environmentally friendly biodiesel processing system. Int. J. Sustain. Energy 30(sup1), S24–S34. DOI: 10.1080/1478646X.2010.542816.
- Daniyan, I., Daniyan, L., Adeodu, A. & Ale, F. (2023). Automation and Control of a Multi-feedstock Biodiesel Production Plant. IETE J. Res. 70(5), 5081–5099. DOI: 10.1080/03772063.2023.2220285.
- Soni, H., Bhattu, M., Verma, M., Kaur, M., Al-Kahtani, A.A., Lone, I.H., Yadav, A.N. & Ubaidullah, M. (2024). From kitchen to cosmetics: Study on the physicochemical and antioxidant properties of waste cooking oil-derived soap. J. King Saud Univ. Sci. 36(10), 103483. DOI: 10.1016/j.jksus.2024.103483.
- Teng, Y., Stewart, S.G., Hai, Y.-W., Li, X., Banwell, M.G. & Lan, P. (2020). Sucrose fatty acid esters: synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit. Rev. Food Sci. Nutr. 61(19), 3297–3317. DOI: 10.1080/10408398.2020.1798346.
- Karmakar, G., Ghosh, P. & Brajendra K. Sharma, B. K. (2017). Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants, 5(4), 44. DOI: 10.3390/lubricants5040044.
- Salmia, B., Muda, Z.C., Alam, M.A., Sidek, L.M. & Hidayah, B. (2013). Used cooking oil as a green chemical admixture in concrete. IOP Conf. Ser.: Earth Environ. Sci. 16, 012077. DOI: 10.1088/1755-1315/16/1/012077.
- Cárdenas, J., Orjuela, A., Sánchez, D.L., Narváez, P.C., Katryniok, B. & Clark, J. (2021). Pre-treatment of used cooking oils for the production of green chemicals: A review. J. Clean. Prod. 289, 125129. DOI: 10.1016/j.jclepro.2020.125129.
- Abidin, S.Z., Haigh, K.F., Saha, B. (2012). Esterification of Free Fatty Acids in Used Cooking Oil Using Ion-Exchange Resins as Catalysts: An Efficient Pretreatment Method for Biodiesel Feedstock. Ind. Eng. Chem. Res. 2, 39.
- dos Reis, S.C.M., Lachter, E.R., Nascimento R.S.V., Rodrigues Jr, J.A., Reid, M.G., (2005) Transesterification of Brazilian Vegetable Oils with Methanol over Ion-Exchange Resins. JAOCS V82, I 9, 661. DOI: 10.1007/s11746-005-1125-y.