References
- Pickering, S.U. (1907). CXCVI.-Emulsions. J. Chem. Soc. Trans. 91, 2001–2021. DOI: 10.1039/CT9079102001.
- Zhou, D., Zhang, Z., Tang, J., Zhao, J. & Liao, L. (2017). Effect of emulsification processes on the stability of Pickering emulsions stabilized by organomontmorillonites. J. Disper. Sci. Technol. 38(7), 1030–1034. DOI: 10.1080/01932691.2016.1218343.
- Guo, X., Li, X., Chan, L., Huang, W. & Chen, T. (2021). Edible CaCO3 nanoparticles stabilized Pickering emulsion as calcium-fortified formulation. J. Nanobiotechnol. 19(1), 1–16. DOI: 10.1186/s12951-021-00807-6.
- Wang, Y. (2017). Study on Modificon of shell powder and application. Master’s dissertation, Dalian Polytechnic University, Dalian, China.
- Gong, X., Wang, Y. & Chen, L. (2017). Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohyd. Polym. 169, 295–303. DOI: 10.1016/j.carbpol.2017.04.024.
- Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. (2011). New Pickering emulsions stabilized by bacterial cellulose nano-crystals. Langmuir, 27(12), 7471–7479. DOI: 10.1021/la200971f.
- Lu X., Zhang H., Li Y. & Huang, Q. (2018). Fabrication of milled cellulose particles-stabilized Pickering emulsions. Food Hydrocolloid. 77, 427–435. DOI: 10.1016/j.foodhyd.2017.10.019.
- Zhang, X., Luo, X., Wang, Y., Li, Y., Li, B. & Liu, S. (2020). Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocolloid. 108, 106025. DOI: 10.1016/j.foodhyd.2020.106025.
- Zhang, Z., Tam, K.C., Wang, X. & Sèbe, G. (2018). Inverse Pickering Emulsions Stabilized by Cinnamate Modified Cellulose Nanocrystals as Templates to Prepare Silica Colloidosomes. ACS Sustainable Chem. Eng. 6, 2583–2590. DOI: 10.1021/acssuschemeng.7b04061.
- Zhao, H., Yang, Y., Chen, Y., Li, J., Wang, L. & Li, C. (2022). A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application [J]. Chem. Eng. Sci. 248, 117085. DOI: 10.1016/j.ces.2021.117085.
- Sarkar, A., Zhang, S., Holmes, M. & Ettelaie, R. (2019). Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Adv. Colloid Interfac. Sci. 263, 195–211. DOI: 10.1016/j.cis.2018.10.002.
- Thompson, K.L., Derry, M.J., Hatton, F.L. Armes, S.P. (2018). Long-Term Stability of n-Alkane-in-Water Pickering Nanoemulsions: Effect of Aqueous Solubility of Droplet Phase on Ostwald Ripening. Langmuir 34(31), 9289–9297. DOI: 10.1021/acs.langmuir.8b01835.
- Aveyard, R., Binks, B.P. & Clint, J.H. (2003). Emulsions stabilised solely by colloidal particles. Adv. Colloid Interfac. Sci. 100, 503–546. DOI: 10.1016/S0001-8686(02)00069-6.
- Binks, B.P. (2002).Particles as surfactants—similarities and differences. Curr. Opin. Colloid. In. Sci.7(1-2), 21–41. DOI: 10.1016/S1359-0294(02)00008-0.
- Binks, B.P. & Clint, J.H. (2002). Solid Wettability from Surface Energy Components: Relevance to Pickering Emulsions. Langmuir,18(4), 1270–1273. DOI: 10.1021/la011420k.
- Wu, F., Deng, J., Hu, L., Zhang, Z., Jiang, H., Li, Y., Yi, Z. &Ngai, To. (2020). Investigation of the stability in Pickering emulsions preparation with commercial cosmetic ingredients. Colloid Surface. A 602(1), 125082. DOI: 10.1016/j.colsurfa.2020.125082.
- Rayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P. & Wahlgren, M. (2014). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloid Surface. A 458(1), 48–62. DOI: 10.1016/j.colsurfa.2014.03.053.
- Wouters, A.G. & Delcour, J.A. (2019). Cereal protein based nanoparticles as agents stabilizing air-water and oil-water interfaces in food systems. Curr. Opin. Food Sci. 25, 19–27. DOI: 10.1016/j.cofs.2019.02.002.
- Peito, S., Peixoto, D., Ferreira-Faria, I., Martins, A.M., Ribeiro, H.M., Veiga, F. & Marto, J. (2022). Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications . Int. J. Pharmaceut. 615, 121455. DOI: 10.1016/j.ijpharm.2022.121455.
- Liu, C.F., Sun, R.C., Zhang, A.P., Ren, J.L., Wang, X.A., Qin, M.H., Chao, Z.N. & Luo, W. (2007). Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr. Res. 342(7), 919–926. DOI: 10.1016/j.carres.2007.02.006.
- Saidane, D., Perrin, E., Cherhal, F., Guellec, F. & Capron, I. (2016). Some modification of cellulose nanocrystals for functional Pickering emulsions. Phil. Trans. R. Soc. A 374, 20150139. DOI: 10.1098/rsta.2015.0139.
- Yin, C., Wei, X., Li, J. & Wang, F. (2012).The Research Progress of Cellulose Modification Technology. Guangdong Chem. Ind. 39(15), 17–19.
- Ding, M., Zhang, T., Zhang, H., Tao, N., Wang, X. & Zhong J. (2019). Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle pickering emulsions in liquid forms. Food Hydrocolloid. 95, 326–335. DOI: 10.1016/j.foodhyd.2019.04.052.
- Teo, A., Lee, S.J., Goh, K.K.T. & Wolber, F.M. (2017). Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem. 221, 1269–1276. DOI: 10.1016/j.foodchem.2016.11.030.
- Azubuike, C.P. & Okhamafe, A.O. (2012). Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int. J. Recycling Org. Waste Agric. 1(1), 9. DOI: 10.1186/2251-7715-1-9.
- Kaushik, M., Basu, K., Benoit, C., Citriu, C.M., Vali, H. & Moores, A. (2015). Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization. J. Am. Chem. Soc. 137(19), 6124–6127. DOI: 10.1021/jacs.5b02034.
- Aung, N.N. (2014). Evaluation of myanmar thanakha (Hesperethusa Crenulata (Roxb.) M. Roem) and processing of its. Ind. Chem. 2(2), 108–118.
- Aung, H.M., Kanpipit, N., Thapphasaraphong, S. (2024). Effects of Thanaka (Hesperethusa crenulata) Stem Bark Extract on Collagen Activation and Anti-Melanogenesis for Cosmetic Applications. Trop. J. Nat. Prod. Res. 8(1), 5852–5860. DOI: 10.26538/tjnpr/v8i1.21.
- Lim, M.W., Tang, Y.Q., Aroua, M.K., Gew, L.T. (2024). Glycerol Extraction of Bioactive Compounds from Thanaka (Hesperethusa crenulata) Bark through LCMS Proffling and Their Antioxidant Properties, ACS Omega 9, 14388–14405. DOI: 10.1021/acsomega.4c00041.
- Lim, M.W., Aroua, M.K., Gew, L.T. (2021). Thanaka (H. crenulata, N. crenulata, L. acidissima L.): A Systematic Review of Its Chemical, Biological Properties and Cosmeceutical Applications. Cosmetics 8, 68. DOI: 10.3390/cosmetics8030068.
- Shorey, R. & Mekonnen, T.H. (2023). Esterification of lignin with long chain fatty acids for the stabilization of oil-in-water Pickering emulsions. Int. J. Biol. Macromol. 230, 123–143. DOI: 10.1016/j.ijbiomac.2023.123143.
- Singha, A.S., Thakur, V.K., Mehta, I.K., Shama, A., Khanna, A.J., Rana, P.K. & Rana, A.K. (2009). Surface-modified Hibiscus sabdariffa fibers: Physicochemical, thermal, and morphological properties evaluation. Int. J. Polym. Anal. Ch. 14(8), 695–711. DOI: 10.1080/10236660903325518.
- Boldyrev, V.V. (1998). Mechanical Activation and its Application in Technology. Materials Science Forum 269–272, 227–234. DOI: 10.4028/www.scientific.net/MSF.269-272.227.
- Fahmy, T.Y.A., Mobarak, F. & El-Meligy, M.G. (2008). Introducing undeinked old newsprint as a new resource of electrical purposes paper. Wood Sci. Technol. 42(8), 691–698. DOI: 10.1007/s00226-008-0180-y.
- Baiardo, M., Frisoni, G., Scandola, M. & Licciardello, A. (2002). Surface chemical modification of natural cellulose fibers. J. Appl. Polym. Sci. 83(1), 38–45. DOI: 10.1002/app.2229.
- Nypelö, T., Laine, C., Aoki, M., Tammelin, T. & Henniges, U. (2016). Etherification of Wood-Based Hemicelluloses for Interfacial Activity. Biomacromolecules 17(5), 1894–1901. DOI: 10.1021/acs.biomac.6b00355.
- Zhang, W., Li, L., Ou, W., Song, L. & Zhang, Q. (2018). Hydrophobic modification of hemp powders for their application in the stabilization of Pickering emulsions. Cellulose 25, 4107–4120. DOI: 10.1007/s10570-018-1848-6.
- Punyamurthy, R., Sampathkumar, D., Srinivasa, C.V. & Bennehalli, B. (2012). Effect of alkali treatment on water absorption of single cellusosic abaca fiber. Bio. Res. 7, 3515–3524. DOI: 10.15376/biores.7.3.3515-3524.
- Singha, A.S., Thakur, V.K., Mehta, I.K., Shama, A., Khanna, A.J., Rana, R.K. & Rana, A.K. (2009). Surface-Modified Hibiscus sabdariffa Fibers: Physicochemical, Thermal, and Morphological Properties Evaluation. Int. J. Polym. Anal. Ch. 14(8), 695–711. DOI: 10.1080/10236660903325518.
- George, M., Mussone, P.G. & Bressler, D.C. (2014). Surface and thermal characterization of natural fibres treated with enzymes. Ind. Crop. Prod. 53, 365–373. DOI: 10.1016/j.indcrop.2013.12.037.
- Reed, A.R. & Williams, P.T. (2004). Thermal Processing of Biomass Natural Fibre Wastes by Pyrolysis. Int. J. Energ. Res. 28(2), 131–145. DOI: 10.1002/er.956.
- Zhang, X., Shao, Z., Zhou, Y., Wei, J., He, W., Wang, S., Dai, X. & Ren, J. (2019). Redispersibility of cellulose nanoparticles modified by phenyltrimethoxysilane and its application in stabilizing Pickering emulsions. J. Mater. Sci. 54(17), 11713–11725. DOI: 10.1007/s10853-019-03691-6.
- Li, C., Li, Y., Sun, P. & Yang, C. (2013). Pickering emulsions stabilized by native starch granules. Colloid Surface A 431(33), 142–149. DOI: 10.1016/j.colsurfa.2013.04.025.
- Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., Liu, Z. & Yuan, W. (2017). An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 8, 1-20. DOI: 10.3389/fphar.2017.00287.
- Mwaikambo, L.Y. & Ansell, M.P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84(12), 2222–2234. DOI: 10.1002/app.10460.
- Roy, D., Semsarilar, M., Guthrie, J.T. & Perrier, S. (2009). Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064. DOI: 10.1039/B808639G.
- Xu, G., Nigmatullin, R. & Koev, T.T. (2022). Octylamine-Modified Cellulose Nanocrystal-Enhanced Stabilization of Pickering Emulsions for Self-Healing Composite Coatings. ACS Appl. Mater. Interfaces 14(10), 12722–12733. DOI: 10.1021/acsami.2c01324.
- Lotierzo, A. & Bon, S.A.F. (2017). A mechanistic investigation of Pickering emulsion polymerization. Polym. Chem. 8(34), 1–13. DOI: 10.1039/C7PY00308K.
- Röhl, S., Hohl, L., Kempin, M., Enders, F., Jurtz, N. & Kraume, M. (2019). Influence of Different Silica Nanoparticles on Drop Size Distributions in Agitated Liquid-Liquid Systems. Chem. Ing. Tech. 91(17), 1–17. DOI: 10.1002/cite.201900049.
- Wei, Y., Tong, Z., Dai, L., Wang, D., Lv, J., Mao, L. & Gao, Y. (2020). Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydro-colloid 104(1-2), 105738. DOI: 10.1016/j.foodhyd.2020.105738.
- Zhang, Q., Shen, X., Zhang, D., Jiang, W., Lei, J. & Zhang, W. (2021). Fabrication and characterization of novel high internal Pickering emulsions stabilized solely by ultrafine pearl powder. Colloid. Surface. A 624, 126797. DOI: 10.1016/j.colsurfa.2021.126797.
- Marefati, A., Matos, M., Wiege, B., Haase, N.U., Rayner, M. (2018). Pickering emulsifiers based on hydrophobically modified small granular starches Part II – Effects of modification on emulsifying capacity. Carbohyd. Polym. 201, 416–424, DOI: 10.1016/j.carbpol.2018.08.049.
- Tcholakova, S., Denkov, N.D. & Lips, A. (2008). Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys. Chem. Chem. Phys. 10(12), 1608–1627. DOI: 10.1039/b715933c.
- Hui, Y., Huang, F., Zhu, L., Ning, J., Zhang, R. & He, Y. (2021). Preparation of O/W Pickering emulsions and their ultraviolet absorption performance. Appl. Chem. Ind. 1(50), 83–86.