References
- Khamees, H.T. & Algburi, S. (2023). Laser beam blink propagation: Evaluation BER in free space resembled dual SLG. Optics and Lasers in Engineering, 171, 107761. DOI: 10.1016/j.optlaseng.2023.107761.
- Khamees, H.T., Hussein, A.S. & Abdulkhaleq, N.I. (2023). An evaluation of scintillation index in atmospheric turbulent for new super Lorentz vortex Gaussian beam. TELKOMNIKA (Telecommun. Comp. Electr. Control), 21(1), 1–7. DOI: 10.12928/telkomnika.v21i1.22221.
- Khamees, H.T. (2022). Laser Gaussian beam analysis of structure constant depends on Kolmogorov in turbulent atmosphere for a variable angle of wave propagation. J. Laser Appl. 34(2). DOI: 10.2351/7.0000660.
- Abdullah, N.N. & Ibrahim, H.A. (2017). Experimental Study on Heat Transfer and Friction Factor Characteristics of Single Layer Graphene Based DI-water Nanofluid in a Circular Tube under Laminar Flow and Different Heat Fluxes as Boundary Conditions. J. Engin. 23(5), 106–122. DOI:10.31026/j.eng.2017.05.08.
- Majeed, A., Rasheed, R., Abdullah, T., Mohammed, M., Aljibori, H. & Abdullah, O. (2023). Preparation, Characterization, And Nanozyme Activity of Fe2O3 And Fe3O4 Nanoparticles as Acetylcholine Esterase. J. Balkan Tribolog. Assoc. 29(5), pp. 737–750.
- Nafil, R.Q., Majeed, M.S. & Hashim, E.T. (2019). Improvement electrolysis of water efficiency for hydrogen production using stainless steel nanoparticles synthesized by laser technique. J. Mech. Eng. Res. Dev, 42, 20–22. DOI: 10.26480/jmerd.04.2019.20.22.
- Al-Ali, D. & Kamoona, G.M.I. (2021). Effectiveness of nanomaterial in the roof of the building to achieve energy conservation for indoor environment of the building. J. Engin. 27(2), 126–148. DOI: 10.31026/j.eng.2021.02.09.
- Delma, M.T., Vijila, B. & Rajan, M.J. (2016). Green synthesis of copper and lead nanoparticles using ZingiberOfficinale stemextract. Internat. J. Sci. Res. Public. 6(11), 134–137.
- Devendra, K., A., Neelam, J. (2016). Green chemistry approach, synthesis, characterisation and thermal studies of nanocomposites of lead oxide nanoparticles. J. Chem. & Pharmac. Res. 8(10), 86–93.
- Majeed, M.S., Nafil, R.Q., Jabbar, M.F.A. & Suffer, K. (2021, March). Preparation of ZnO Nanoparticles by 1064/532nm Laser Ablation and Studying the Effect of the Ablation Wavelength. In Materials Science Forum (Vol. 1021, pp. 171–180). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/MSF.1021.171.
- Dutta, R.K., Nenavathu, B.P., Gangishetty, M.K. & Reddy, A.V.R. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids and Surfaces B: Biointerfaces, 94, 143–150. DOI: 10.1016/j.colsurfb.2012.01.046.
- Majeed, M.S. & Nafil, R.Q. (2018). Laser improves biogas production by anaerobic digestion of cow dung. Baghdad Sci. J. 15(3), 0324–0324. DOI: 10.21123/bsj.2018.15.3.0324.
- Elango, G. & Roopan, S.M. (2015). Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim. Acta Part A: Molec. Biomolecular Spectrosc. 139, 367–373. DOI: 10.1016/j.saa.2014.12.066.
- Hu, T.L., Hwa, J.Z., Chang, W.F. & Wu, J.J. (2012). Antibacterial study using nano silver-doped high density polyethylene pipe. Sust. Environ. Res. 22(3), 153–158.
- Majeed, M.S. & Nafil, R.Q. (2018). Laser improves biogas production by anaerobic digestion of cow dung. Baghdad Sci. J. 15(3), 0324–0324. DOI: 10.21123/bsj.2018.15.3.0324.
- Lara, H.H., Ayala-Núnez, N.V., Ixtepan Turrent, L.D.C. & Rodríguez Padilla, C. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microb. Biotech. 26, 615–621. DOI: 10.1007/s11274-009-0211-3.
- Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M. E. & Kalinina, N.O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия), 6(1(20)), 35–44.
- Majeed, M.S., Hamad, T.K. & Hashim, E.T. (2018). ZnO nanoparticle synthesis using ND: YAG laser for increasing hydrogen fuel cell performance. Int. J. Mech. Prod. Eng. Res. Dev. 8, 497–506. DOI: 10.24247/ijmperddec201853.
- Nabıpour, Y.S. & Rostamzad, A. (2015). Comparing the antimicrobial effects of silver and copper nanoparticles against pathogenic and resistant bacteria of Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus aureus. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 2541–2546.
- Majeed, M.S., Mahmoud, S.M.M., Rasheed, R.M. & Rashad, A.A. (2024). Synthesis AgO Nanoparticles by Nd: Yag Laser with Different Pulse Energies. Baghdad Sci. 21(1), 0217–0217. DOI: 10.21123/bsj.2023.7539.
- Parameshwaran, R., Kalaiselvam, S. & Jayavel, R. (2013). Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure. Mat. Chem. Physics, 140(1), 135–147. DOI: 10.1016/j.matchemphys.2013.03.012.
- Parashar, U.K., Kumar, V., Bera, T., Saxena, P.S., Nath, G., Srivastava, S.K., Giri, R. & Srivastava, A. (2011). Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology, 22(41), 415104. DOI: 10.1088/0957-4484/22/41/415104.
- Nafil, R.Q. & Majeed, M.S. (2020). Frequency doubling by nonlinearity of TiO2 nanomaterial. Heliyon, 6(3). DOI: 10.1016/j.heliyon.2020.e03649.
- Selvam, S., Gandhi, R.R., Suresh, J., Gowri, S., Ravi-kumar, S. & Sundrarajan, M. (2012). Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Internat. J. Pharmac. 434(1-2), 366–374. DOI: 10.1016/j.ijpharm.2012.04.06.
- Shrivastava, S. & Jyung, W. (2010). Characterization of enhanced antibacterial effects of nano silver nano particles. J. Nanotech. 25, 103–25. DOI: 10.1088/0957-4484/18/22/225103.
- Khamees, H.T. & Majeed, M.S. (2024). A receiver intensity for Super Lorentz Gaussian beam (SLG) propagation via the moderate turbulent atmosphere using a novelty mathematical model. J. Optical Commun. 44(s1), 1857–1864. DOI: 10.1515/joc-2020-0062.