References
- Avila, C.R. (2012). Predicting self-oxidation of coals and coal/biomass blends using thermal and optical methods. Doctor Thesis, The University of Nottingham. https://eprints.nottingham.ac.uk/12710/1/Predicting_self-oxidation_of_coals_and_coalbiomass_blends_using_thermal_and_optical_methods._Claudio_Avila.pdf.
- Çift, B.D. & Okutan, H. (2013). Turkey’s Energy Vıew, Clean Energy Technologıes and Determination of Appropriate Energy Policy. J. Naval Sci. Engin. 9(1), 81–97. https://dergipark.org.tr/en/download/article-file/105353.
- Coal (2020). Analysis and forecast to 2025. https://www.iea.org/reports/coal-2020.
- Dinçer, İ. (2018). TÜBA-Temiz Kömür Teknolojileri Raporu. Ankara. https://www.tuba.gov.tr/files/yayinlar/raporlar/T%C3%9CBATemiz%20K%C3%B6m%C3%BCr%20Teknolojileri%20Raporu.pdf.
- Odeh, A.O. (2017). Pyrolysis: Pathway to Coal Clean Technologies. https://www.intechopen.com/chapters/54010
- Porada, S., Rozwadowski, A. & Zubek, K. (2016). Studies of catalytic coal gasification with steam. Polish J. Chem. Technol. 18, 3, 97–102. DOI: 10.1515/pjct-2016-0054.
- Karimi, A. & Gray, M.R. (2011). Effectiveness and mobility of catalysts for gasification of bitumen coke, Fuel, 90, 120–125. DOI:10.1016/j.fuel.2010.07.032.
- Nzihou, A., Stanmore, B.Y. & Sharrock, P. (2013). A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 58, 305–317. DOI:10.1016/j.energy.2013.05.057.
- Arenillas, A., Rubiera, F. & Pis, J.J. (1999). Simultaneous thermogravimetric – mass spectrometric study on the pyrolysis behavior of different rank coals. J. Anal. Appl. Pyrol. 50(1), 31–46. DOI:10.1016/S0165-2370(99)00024-8.
- Arenillas, A., Rubiera, F., Pevida C. & Pis, J.J.A. (2001). comparison of different methods for predicting Coal devolatilisation kinetics. J. Anal. Appl. Pyrol. 58–59, 685–701. DOI: 10.1016/S0165-2370(00)00183-2.
- Arenillas, A., Rubiera, F., Pis, J.J., Jiménez, A. & Suárez--Ruiz, I. (2003). Thermal behavior during the pyrolysis of low rank perhydrous coals. J. Anal. Appl. Pyrol. 68–69, 371–385. DOI: 10.1016/S0165-2370(03)00031-7.
- Akahira, T. & Sunose, T. (1971). Joint Convention of four electrical institutes. Sci. Technol. 16, 22–31.
- Kissinger, H. (1956). Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nation. Bureau Stand. 57(4), 217–221.
- Flynn, J. & Wall, L. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B: Pol. Letters, 4(5), 323–328.
- Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan, 38, 1881–1886.
- Evans, M.G. & Polanyi, M. (1935). Some applications of transition state method to calculation of reaction velocities, especially in solution. J. Chem. Soc. Faraday Trans. 31, 875–894. https://pubs.rsc.org/en/content/articlelanding/1935/tf/tf9353100875.
- Eyring, H. (1935). The activated complex in chemical reactions. J. Chem. Phys. 3 (2), 107–115. DOI: 10.1021/cr60056a006.
- Küçük, E. (2023). Erzurum (Oltu) Umutbaca Kömürünün Katalitik Pirolizinin Termal Analiz Yöntemi ile İncelenmesi, Master Thesis, Atatürk University. Graduate School of Natural Appl.Sci. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
- Iordanidis, A., Georgakopoulos, A., Markova, K., Filipiddis, A. & Kassoli-Fournaraki, A. (2001). Application of TG-DTA to the study of Amynteon lignites, northern Greece Therm. Chim. Acta, 371, 137. DOI: 10.1016/S0040-6031(01)00418-X.
- Jia, Y., Huang, J. & Wang, Y. (2004) Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed, Energy Fuels, 18(6), 1625–1632. DOI: 10.1021/ef034077v.
- Yang, J. & Cai, N. (2006). A TG-FTIR study on catalytic pyrolysis of coal. J. Fuel Chem. Technol. 34(6). DOI: 10.1016/S1872-5813(07)60002-4.
- Fu, Y., Guo, Y.H. & Zhang, K. (2016). Effect of Three Different Catalysts (KCl, CaO, and Fe2O3) on the Reactivity and Mechanism of Low-Rank Coal Pyrolysis. Energy Fuels 30, 2428−2433. DOI: 10.1021/acs.energyfuels.5b02720.
- Prabhakar, A., Sadhukhan, A.K., Mallick, R. & Gupta, P. (2019). Study of pyrolysis kinetics and characterization using TG-FTIR, GC, and BET using high ash Indian sub-bituminous coal, in press. Energy Sourc., Part A: Recovery, Utılızatıon, Environ. Effects, 46(1), 4419–4434. DOI: 10.1080/15567036.2019.1704311.
- Zhu, T.Y., Liu, L.P., Wang, Y. & Huang, J.J. (2000). Study on coal mild gasification with CaO catalyst. J. Fuel Chem. Tech. 28(1), 36–39.
- Wang, W., Lemaire, R., Bensakhria, A. & Luart, D. (2022). Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrol. 163, 105479. DOI: 10.1016/j.jaap.2022.105479.
- Barzegar, R., Avsaroglu, S., Yozgatligil, A. & Atimtay, A.T. (2018). Pyrolysis characteristics of Turkish lignites in N2 and CO2 environments. Energy Sourc., Part A: Recovery, Utilization, and Environ. Effects, 40(20), 2467–2475. DOI: 10.1080/15567036.2018.1502845.
- Yan, J., Yang, Q., Zhang, L., Lei, Z., Li, Z., Wang, Z., Ren, S., Kang, S. & Shui, H. (2020). Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods. Carbon Resources Conv. 3, 173–181. DOI: 10.1016/j.crcon.2020.11.002.
- Xu, Y. & Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Biores. Tech. 146, 485–493. DOI: 10.1016/j.biortech.2013.07.086.
- Merdun, H. & Laouge, Z.B. (2021). Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA, Renewable Energy, 163 453–464. DOI: 10.1016/j.renene.2020.08.120.
- Mallick, D., Poddar, M.K., Mahantaa, P. & Moholkar, V.S. (2018). Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Biores. Tech. 261, 294–305. DOI:10.1016/j.biortech.2018.04.011.