Have a personal or library account? Click to login
Investigation of catalytic pyrolysis of Erzurum-Umutbaca coal by using the thermal analysis method Cover

Investigation of catalytic pyrolysis of Erzurum-Umutbaca coal by using the thermal analysis method

By: Elvan Küçük and  Jale Naktiyok  
Open Access
|Apr 2025

References

  1. Avila, C.R. (2012). Predicting self-oxidation of coals and coal/biomass blends using thermal and optical methods. Doctor Thesis, The University of Nottingham. https://eprints.nottingham.ac.uk/12710/1/Predicting_self-oxidation_of_coals_and_coalbiomass_blends_using_thermal_and_optical_methods._Claudio_Avila.pdf.
  2. Çift, B.D. & Okutan, H. (2013). Turkey’s Energy Vıew, Clean Energy Technologıes and Determination of Appropriate Energy Policy. J. Naval Sci. Engin. 9(1), 81–97. https://dergipark.org.tr/en/download/article-file/105353.
  3. Coal (2020). Analysis and forecast to 2025. https://www.iea.org/reports/coal-2020.
  4. Dinçer, İ. (2018). TÜBA-Temiz Kömür Teknolojileri Raporu. Ankara. https://www.tuba.gov.tr/files/yayinlar/raporlar/T%C3%9CBATemiz%20K%C3%B6m%C3%BCr%20Teknolojileri%20Raporu.pdf.
  5. Odeh, A.O. (2017). Pyrolysis: Pathway to Coal Clean Technologies. https://www.intechopen.com/chapters/54010
  6. Porada, S., Rozwadowski, A. & Zubek, K. (2016). Studies of catalytic coal gasification with steam. Polish J. Chem. Technol. 18, 3, 97–102. DOI: 10.1515/pjct-2016-0054.
  7. Karimi, A. & Gray, M.R. (2011). Effectiveness and mobility of catalysts for gasification of bitumen coke, Fuel, 90, 120–125. DOI:10.1016/j.fuel.2010.07.032.
  8. Nzihou, A., Stanmore, B.Y. & Sharrock, P. (2013). A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 58, 305–317. DOI:10.1016/j.energy.2013.05.057.
  9. Arenillas, A., Rubiera, F. & Pis, J.J. (1999). Simultaneous thermogravimetric – mass spectrometric study on the pyrolysis behavior of different rank coals. J. Anal. Appl. Pyrol. 50(1), 31–46. DOI:10.1016/S0165-2370(99)00024-8.
  10. Arenillas, A., Rubiera, F., Pevida C. & Pis, J.J.A. (2001). comparison of different methods for predicting Coal devolatilisation kinetics. J. Anal. Appl. Pyrol. 58–59, 685–701. DOI: 10.1016/S0165-2370(00)00183-2.
  11. Arenillas, A., Rubiera, F., Pis, J.J., Jiménez, A. & Suárez--Ruiz, I. (2003). Thermal behavior during the pyrolysis of low rank perhydrous coals. J. Anal. Appl. Pyrol. 68–69, 371–385. DOI: 10.1016/S0165-2370(03)00031-7.
  12. Akahira, T. & Sunose, T. (1971). Joint Convention of four electrical institutes. Sci. Technol. 16, 22–31.
  13. Kissinger, H. (1956). Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nation. Bureau Stand. 57(4), 217–221.
  14. Flynn, J. & Wall, L. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B: Pol. Letters, 4(5), 323–328.
  15. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan, 38, 1881–1886.
  16. Evans, M.G. & Polanyi, M. (1935). Some applications of transition state method to calculation of reaction velocities, especially in solution. J. Chem. Soc. Faraday Trans. 31, 875–894. https://pubs.rsc.org/en/content/articlelanding/1935/tf/tf9353100875.
  17. Eyring, H. (1935). The activated complex in chemical reactions. J. Chem. Phys. 3 (2), 107–115. DOI: 10.1021/cr60056a006.
  18. Küçük, E. (2023). Erzurum (Oltu) Umutbaca Kömürünün Katalitik Pirolizinin Termal Analiz Yöntemi ile İncelenmesi, Master Thesis, Atatürk University. Graduate School of Natural Appl.Sci. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  19. Iordanidis, A., Georgakopoulos, A., Markova, K., Filipiddis, A. & Kassoli-Fournaraki, A. (2001). Application of TG-DTA to the study of Amynteon lignites, northern Greece Therm. Chim. Acta, 371, 137. DOI: 10.1016/S0040-6031(01)00418-X.
  20. Jia, Y., Huang, J. & Wang, Y. (2004) Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed, Energy Fuels, 18(6), 1625–1632. DOI: 10.1021/ef034077v.
  21. Yang, J. & Cai, N. (2006). A TG-FTIR study on catalytic pyrolysis of coal. J. Fuel Chem. Technol. 34(6). DOI: 10.1016/S1872-5813(07)60002-4.
  22. Fu, Y., Guo, Y.H. & Zhang, K. (2016). Effect of Three Different Catalysts (KCl, CaO, and Fe2O3) on the Reactivity and Mechanism of Low-Rank Coal Pyrolysis. Energy Fuels 30, 2428−2433. DOI: 10.1021/acs.energyfuels.5b02720.
  23. Prabhakar, A., Sadhukhan, A.K., Mallick, R. & Gupta, P. (2019). Study of pyrolysis kinetics and characterization using TG-FTIR, GC, and BET using high ash Indian sub-bituminous coal, in press. Energy Sourc., Part A: Recovery, Utılızatıon, Environ. Effects, 46(1), 4419–4434. DOI: 10.1080/15567036.2019.1704311.
  24. Zhu, T.Y., Liu, L.P., Wang, Y. & Huang, J.J. (2000). Study on coal mild gasification with CaO catalyst. J. Fuel Chem. Tech. 28(1), 36–39.
  25. Wang, W., Lemaire, R., Bensakhria, A. & Luart, D. (2022). Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrol. 163, 105479. DOI: 10.1016/j.jaap.2022.105479.
  26. Barzegar, R., Avsaroglu, S., Yozgatligil, A. & Atimtay, A.T. (2018). Pyrolysis characteristics of Turkish lignites in N2 and CO2 environments. Energy Sourc., Part A: Recovery, Utilization, and Environ. Effects, 40(20), 2467–2475. DOI: 10.1080/15567036.2018.1502845.
  27. Yan, J., Yang, Q., Zhang, L., Lei, Z., Li, Z., Wang, Z., Ren, S., Kang, S. & Shui, H. (2020). Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods. Carbon Resources Conv. 3, 173–181. DOI: 10.1016/j.crcon.2020.11.002.
  28. Xu, Y. & Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Biores. Tech. 146, 485–493. DOI: 10.1016/j.biortech.2013.07.086.
  29. Merdun, H. & Laouge, Z.B. (2021). Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA, Renewable Energy, 163 453–464. DOI: 10.1016/j.renene.2020.08.120.
  30. Mallick, D., Poddar, M.K., Mahantaa, P. & Moholkar, V.S. (2018). Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Biores. Tech. 261, 294–305. DOI:10.1016/j.biortech.2018.04.011.
Language: English
Page range: 29 - 37
Submitted on: Jun 4, 2024
|
Accepted on: Feb 4, 2025
|
Published on: Apr 10, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Elvan Küçük, Jale Naktiyok, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.