References
- Arora, P., Arora, V., Lamba, H.S., Wadhwa, D. (2012). Importance of heterocyclic chemistry: A review. IJPSR, 3.
- Martins, P., Jesus, J., Santos, S., Raposo, L.R., Roma-Rodrigues, C., Baptista, P.V., Fernandes, A.R. (2015). Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules, 20. DOI: 10.3390/molecules200916852.
- Eftekhari-Sis, B., Zirak, M., Akbari, A. (2013). Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev. 113. DOI: 10.1021/cr300176g.
- Alamgir, A.N.M. (2018). Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles. Progress in Drug Research. DOI: 10.1007/978-3-319-92387-1_3.
- Bhambhani, S., Kondhare, K.R., Giri, A.P. (2021). Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 26. DOI: 10.3390/molecules26113374.
- Alamgir, A.N.M. (2018). Phytoconstituents—Active and inert constituents, metabolic pathways, chemistry and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin. Progress in Drug Research. DOI: 10.1007/978-3-319-92387-1_2.
- Lang, D.K., Kaur, R., Arora, R., Saini, B., Arora, S. (2020). Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer Agents Med. Chem. 20. DOI: 10.2174/1871520620666200705214917.
- Bhardwaj, N., Pathania, A., Kumar, P. (2020). Naturally available nitrogen-containing fused heterocyclics as prospective lead molecules in medicinal chemistry. Current Traditional Medicine, 7. DOI: 10.2174/2215083805666190613125700.
- Faisal, M., Saeed, A., Hussain, S., Dar, P., Larik, F.A. (2019). Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci. 131. DOI: 10.1007/s12039-019-1646-1.
- Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-Aizari, F.A., Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 23. DOI: 10.3390/molecules23010134.
- Ansari, A., Ali, A., Asif, M., Shamsuzzaman, S. (2017). Review: Biologically active pyrazole derivatives. J. Chem. 41, 16–41. DOI: 10.1039/C6NJ03181A.
- Chauhan, S., Paliwal, S., Chauhan, R. (2014). Anticancer activity of pyrazole via different biological mechanisms. Synth. Commun. 44. DOI: 10.1080/00397911.2013.837186.
- Abrigach, F., Touzani, R. (2016). Pyrazole derivatives with NCN junction and their biological activity: A review. Med. Chem. (Los Angeles), 6. DOI: 10.4172/2161-0444.1000359.
- Kumar, V., Kaur, K., Gupta, G.K., Sharma, A.K. (2013). Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem. 69, DOI: 10.1016/j.ejmech.2013.08.053.
- Mantzanidou, M., Pontiki, E., Hadjipavlou-Litina, D. (2021). Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules, 26. DOI: 10.3390/molecules26113439.
- Ravindar, L., Hasbullah, S.A., Rakesh, K.P., Hassan, N.I. (2023). Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. Europ. J. Sci. 183. DOI: 10.1016/j.ejps.2022.106365.
- Britton, J., Jamison, T.F. (2017). A unified continuous flow assembly-line synthesis of highly substituted pyrazoles and pyrazolines. Angewandte Chemie - International Edition, 56. DOI: 10.1002/anie.201704529.
- Kumar, S., Bawa, S., Drabu, S., Kumar, R., Gupta, H. (2009). Biological activities of pyrazoline derivatives - A recent development. Recent Pat. Antiinfect. Drug Discov., 4. DOI: 10.2174/157489109789318569.
- Varghese, B., Al-Busafi, S.N., Suliman, F.O., Al-Kindy, S.M.Z. (2017). Unveiling a versatile heterocycle: Pyrazoline -A review. RSC Adv. 7. DOI: 10.1039/c7ra08939b.
- van Alphen, J. (1943). Pyrazolines and their rearrangement to form pyrazoles. II. (Pyrazole and pyrazoline derivatives, IV). Recueil des Travaux Chimiques des Pays-Bas, 62. DOI: 10.1002/recl.19430620713.
- Faidallah, H.M., Khan, K.A., Rostom, S.A.F., Asiri, A.M. (2013). Synthesis and in vitro antitumor and antimicrobial activity of some 2,3-diaryl-7-methyl-4,5,6,7-tetrahydroindazole and 3,3a,4,5,6,7-hexahydroindazole derivatives. J. Enzyme Inhib. Med. Chem. 28. DOI: 10.3109/14756366.2011.653354.
- M.J. Frisch, G.W., Trucks, H.B., Schlegel, G.E., Scuseria, M.A., Robb, J.R., Cheeseman, G., Scalmani, V., Barone, B., Mennucci, G.A., Petersson, H., Nakatsuji, M., Caricato, X., Li, H.P., Hratchian, A.F., Izmaylov, J., Bloino, G., Zheng, J.L., Sonnenberg, M., Hada, M., Ehara, K., Toyota, R., Fukuda, J., Hasegawa, M., Ishida, T., Nakajima, Y., Honda, O., Kitao, H., Nakai, T., Vreven, J.A., Montgomery Jr., J.E., Peralta, F., Ogliaro, M., Bearpark, J.J., Heyd, E., Brothers, K.N., Kudin, V.N., Staroverov, T., Keith, R., Kobayashi, J., Normand, K., Raghavachari, A., Rendell, J.C., Burant, S.S., Iyengar, J., Tomasi, M., Cossi, N., Rega, J.M., Millam, M., Klene, J.E., Knox, J.B., Cross, V., Bakken, C. Adamo, J., Jaramillo, R., Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L., Martin, K., Morokuma, V.G., Zakrzewski, G.A., Voth, P., Salvador, J.J., Dannenberg, S., Dapprich, A.D., Daniels, O., Farkas, J.B., Foresman, J.V., Ortiz, J., Cioslowski, D.J,. Fox, Gaussian-09, Revision B.01, Gaussian, Inc, Wallingford, CT, 2010.
- Parr, R.G., Szentpály, L.V., Liu, S. (1999). Electrophilicity index. J. Am. Chem. Soc. 121. DOI: 10.1021/ja983494x.
- Pearson, R.G. (2005). Chemical hardness and density functional theory. J. Chem. Sci. 117. DOI: 10.1007/BF02708340.
- Sexton, K. (1997). Sociodemographic aspects of human susceptibility to toxic chemicals: Do class and race matter for realistic risk assessment? Environ. Toxicol. Pharmacol., DOI: 10.1016/S1382-6689(97)10020-5.
- Maridevarmath, C.V., Naik, L., Negalurmath, V.S., Basanagouda, M., Malimath, G.H. (2019). Synthesis, characterization and photophysical studies on novel benzofuran-3-acetic acid hydrazide derivatives by solvatochromic and computational methods. J. Mol. Struct. 1188. DOI: 10.1016/j.molstruc.2019.03.063.
- Naik, L., Thippeswamy, M.S., Praveenkumar, V., Mali-math, G.H., Ramesh, D., Sutar, S., Savanur, H.M., Gudennavar, S.B., Bubbly, S.G. (2023). Solute-solvent interaction and DFT studies on bromonaphthofuran 1,3,4-oxadiazole fluorophores for optoelectronic applications. J. Mol. Graph. Model. 118. DOI: 10.1016/j.jmgm.2022.108367.
- Walki, S., Naik, L., Savanur, H.M., K.C., Y., Naik, S., M.K., R., Malimath, G.H., Mahadevan, K.M. (2020). Design of new imidazole-derivative dye having donor-π-acceptor moieties for highly efficient organic-dye-sensitized solar cells. Optik (Stuttg), 208. DOI: 10.1016/j.ijleo.2019.164074.
- Thippeswamy, M.S., Naik, L., Maridevarmath, C.V., Malimath, G.H. (2021). A comprehensive study on photophysical and electrochemical properties of novel D-π-A thiophene substituted 1,3,4-oxadiazole derivatives for optoelectronic applications: A computational and experimental approach. Chem. Phys. 550. DOI: 10.1016/j.chemphys.2021.
- C. Fonseca Guerra, J.W. Handgraaf, E.J. Baerends, F.M. Bickelhaupt, Voronoi Deformation Density (VDD) Charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD Methods for Charge Analysis. J. Comput. Chem. 25 (2004). DOI: /10.1002/jcc.10351.
- Bandna, C. (2013). Antibacterial Effect of Garlic (Allium Sativum) and Ginger (Zingiber Officinale) Against Staphylococcus Aureus, Salmonella Typhi, Escherichia Coli and Bacillus Cereus. J. Microbiol. Biotechnol. Food Sci. 2.
- Jiang, Q., Yang, M., Qu, Z., Zhou, J., Zhang, Q. (2017). Resveratrol enhances anticancer effects of paclitaxel in HepG2 human liver cancer cells. BMC Complement. Altern. Med. 17. DOI: 10.1186/s12906-017-1956-0.