References
- Ju, Y. & Varma, R.S. (2005). Aqueous N-Heterocyclization of Primary Amines and Hydrazines with Dihalides: Microwave-Assisted Syntheses of N-Azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives. J. Organic Chem. 71(1), 135–141. DOI: 10.1021/jo051878h.
- Mbaba, M., Dingle, L.M.K., Zulu, A.I., Laming, D., Swart, T., de la Mare, J.A., Hoppe, H.C., Edkins, A.L. & Khanye, S.D. (2021). Coumarin-Annulated Ferrocenyl 1,3-Oxazine Derivatives Possessing In Vitro Antimalarial and Antitrypanosomal Potency. Molecules (Basel, Switzerland), 26(5), 1333. DOI: 10.3390/molecules26051333.
- Nagaraj, A. & Reddy, C.S. (2008). Synthesis and biological study of novel bis-chalcones, bis-thiazines and bis-pyrimidines. J. Iranian Chem. Soc. 5(2), 262–267. DOI: 10.1007/bf03246116.
- Zhimomi, B.K., Imchen, P. & Phucho, T. (2022). Recent advances in strategies of green synthesis of 1,3-oxazinesa brief review. Tetrahedron, 109, 132672. DOI: 10.1016/j.tet.2022.132672.
- Shinde, A., Deshmukh, N. & Zangade, S. (2020). Microwave-assisted synthesis of some new bis-1,3-benzoxazines and their antimicrobial activity. Organic Commun. 13(1), 2–8. DOI: 10.25135/acg.oc.71.02.01.1521.
- Lathwal, A., Mathew, B.P. & Nath, M. (2021). Syntheses, Biological and Material Significance of Dihydro[1,3]oxazine Derivatives: An Overview. Current Org. Chem. 25(1), 133–174. DOI: 10.2174/1385272824999201008154659.
- Sawant, R., Bhangale, L., Wadekar, J., Gaikwad, P. (2012). Substituent selection for design and synthesis of antimicrobial 1, 3 oxazines, a topliss modified approach. Farmacia, 60(1), 32–39.
- Mathew, B.P., Kumar, A., Sharma, S., Shukla, P. & Nath, M. (2010). An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Europ. J. Medic. Chem. 45(4), 1502–1507. DOI: 10.1016/j.ejmech.2009.12.058.
- Indorkar Dilesh, Chourasia, O.P., Limaye, S.N. (2014). Synthesis, characterization, of 2h-3-aryl-3, 4-dihydro-1,3-chlorobenzoxazine derivatives of benzoxazoline, antimicrobial activity and pc model computational studies. Res. J. Chem. Sci., 4(12), 13–20.
- Kategaonkar, A.H., Sonar, S.S., Pokalwar, R.U., Kategaonkar, A.H., Shingate, B.B. & Shingare, M.S. (2010). An Efficient Synthesis of 3,4-Dihydro-3-substituted-2H-naphtho[2,1-e][1,3] oxazine Derivatives Catalyzed by Zirconyl(IV) Chloride and Evaluation of its Biological Activities. Bull. Korean Chem. Soc. 31(6), 1657–1660. DOI: 10.5012/bkcs.2010.31.6.1657.
- Rajanarendar, E., Mohan, G. & Reddy, A.S.R. (2008). ChemInform Abstract: Synthesis and Antimicrobial Activity of New Isoxazolyl-1,3-benzoxazines. ChemInform, 39(15). DOI: 10.1002/chin.200815163.
- Shukla, D.K., Rani, M., Khan, A.A., Tiwari, K. & Gupta, R.K. (2013). Synthesis and Biological Activity of Some 3-Aryl-3,4-dihydro-2H-benz[e]- 1,3-oxazines/6-bromo-3-aryl-3,4-dihydro-2H-benz[e]-1,3-oxazines. Asian J. Chem. 25(11), 5921–5924. DOI: 10.14233/ajchem.2013.14091.
- Prasad, D., Kumar Rohilla, R., Roy, N., Nath, M. (2012). synthesis and antibacterial evaluation of benzazoles tethered dihydro [1, 3] oxazines. Indian J. Chem. B, 51, 739–745.
- Manikannan, R. & S. Muthusubramanian, (2010). Synthesis and biological activity of 6-alkyl/chloro-3-{4-(6-alkyl/chloro-2h-benzo [e][1, 3] oxazin-3 (4h)-yl) phenyl}-3, 4-dihydro-2h--benzo [e][1, 3] oxazines. Indian J. Chem., 49(8), 1083–1087.
- Kmentova, I., Sutherland, H.S., Palmer, B.D., Blaser, A., Franzblau, S.G., Wan, B., Wang, Y., Ma, Z., Denny, W.A. & Thompson, A.M. (2010). Synthesis and Structure−Activity Relationships of Aza- and Diazabiphenyl Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J. Medic. Chem. 53(23), 8421–8439. DOI: 10.1021/jm101288t.
- Trybuła, D., Marszałek-Harych, A., Gazińska, M., Berski, S., Jędrzkiewicz, D. & Ejfler, J. (2020). N-Activated 1,3-Benzoxazine Monomer as a Key Agent in Polybenzoxazine Synthesis. Macromolecules, 53(19), 8202–8215. DOI: 10.1021/acs.macromol.0c02036.
- Tang, Z., Chen, W., Zhu, Z. & Liu, H. (2011). Synthesis of 2,3-diaryl-3,4-dihydro-2H-1,3-benzoxazines and their fungicidal activities. J. Heteroc. Chem. 48(2), 255–260. DOI: 10.1002/jhet.533.
- Tang, Z.L., Xia, Z.W., Chang, S.H. & Wang, Z.X. (2015). Synthesis and fungicidal activity of novel 2-aryl-3-(1,3,4-thiadiazolyl)-6(8)-methyl-1,3-benzoxazines. Bioorg. & Med. Chem. Letters, 25(16), 3378–3381. DOI: 10.1016/j.bmcl.2015.05.010.
- Shakil, N.A., Pandey, A., Singh, M.K., Kumar, J., Awasthi, S.K., Pankaj, N., Srivastava, C., Singh, M.K. & Pandey, R.P. (2010). Synthesis and bioefficacy evaluation of new 3-substituted-3,4-dihydro-1,3-benzoxazines. J. Environ. Sci. Health Part B, 45(2), 108–115. DOI: 10.1080/03601230903471852.
- Hussain, J., Ur Rehman, N., Hussain, H., Al-Harrasi, A., Ali, L., Rizvi, T. S., Ahmad, M. & Mehjabeen (2012). Analgesic, anti-inflammatory, and CNS depressant activities of new constituents of Nepeta clarkei. Fitoterapia, 83(3), 593–598. DOI: 10.1016/j.fitote.2012.01.002.
- Yıldırım, A., Kaya, Y. & Göker, M. (2021). Screening of simple carbohydrates as a renewable organocatalyst for the efficient construction of 1,3-benzoxazine scaffold. Carbohyd. Res. 510, 108458. DOI: 10.1016/j.carres.2021.108458.
- Sharaf, E. (2021). 3,4-Dihydro-2H-1,3-benzoxazines and their oxo-derivatives - Chemistry and bioactivities. J. Serbian Chem. Soc. 86(3), 213–246. DOI: 10.2298/jsc180530001s.
- Pugachev, A.D., Ozhogin, I.V., Kozlenko, A.S., Dmitriev, V.S., Chepurnoy, P B., Mukhanov, E.L. & Lukyanov, B.S. (2023). Study of the by-products in the synthesis of 1,3-benzoxazin-4-one spiropyrans. Russ. Chem. Bull. 72(4), 990–996. DOI: 10.1007/s11172-023-3864-1.
- Akhter, M., Habibullah, S., Hasan, S.M., Alam, M.M., Akhter, N. & Shaquiquzzaman, M. (2010). Synthesis of some new 3,4-dihydro-2H-1,3-benzoxazines under microwave irradiation in solvent-free conditions and their biological activity. Med. Chem. Res. 20(8), 1147–1153. DOI: 10.1007/s00044-010-9451-x.
- Asadi, P., Khodarahmi, G., Jahanian-Najafabadi, A., Saghaie, L. & Hassanzadeh, F. (2017). Synthesis, characterization, molecular docking studies and biological evaluation of some novel hybrids based on quinazolinone, benzofuran and imidazolium moieties as potential cytotoxic and antimicrobial agents. Iranian J. Basic Med. Sci. 20(9), 975-989. DOI: 10.22038/IJBMS.2017.9260.
- Sawant, RL, M.S. Mhaske, & Wadekar, J.B. (2012). Anticoagulant potential of schiff bases of 1, 3-oxazines. Internat. J. Pharm. Pharmac. Sci. 4(4), 320–323. Corpus ID: 74181563.
- Garg, V., Kumar, A., Chaudhary, A., Agrawal, S., Tomar, P. & Sreenivasan, K.K. (2013). Synthesis, biological evaluation and molecular docking studies of 1,3-benzoxazine derivatives as potential anticancer agents. Medic. Chem. Res. 22(11), 5256–5266. DOI: 10.1007/s00044-013-0534-3.
- Bharathkumar, H., Mohan, C.D., Rangappa, S., Kang, T., Keerthy, H.K., Fuchs, J.E., Kwon, N.H., Bender, A., Kim, S., Basappa, & Rangappa, K.S. (2015). Screening of quinoline, 1,3-benzoxazine, and 1,3-oxazine-based small molecules against isolated methionyl-tRNA synthetase and A549 and HCT116 cancer cells including an in silico binding mode analysis. Org. & Biomol. Chem. 13(36), 9381–9387. DOI: 10.1039/c5ob00791g.
- Wattanathana, W., Hanlumyuang, Y., Wannapaiboon, S., Chansaenpak, K., Pinyou, P., Nanok, T. & Kanjanaboos, P. (2021). Novel Dihydro-1,3,2H-benzoxazine Derived from Furfurylamine: Crystal Structure, Hirshfeld Surface Analysis, Photophysical Property, and Computational Study. Crystals, 11(5), 568. DOI: 10.3390/cryst11050568.
- Madhavan, G.R., Chakrabarti, R., Anantha Reddy, K., Rajesh, B., Balraju, V., Bheema Rao, P., Rajagopalan, R. & Iqbal, J. (2006). Dual PPAR-α and -γ activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg. & Medic. Chem. 14(2), 584–591. DOI: 10.1016/j.bmc.2005.08.043.
- Ilić, M., Ilaš, J., Liekens, S., Mátyus, P. & Kikelj, D. (2011). Synthesis and antiproliferative activity of 2-(([1,2,4] triazolo[4,3-b]- pyridazin-6-yloxy)methyl)-2,4-dimethyl-3,4-dihydro-2H-benzo[b][1,4]oxazine derivatives. ARKIVOC, 2011(10), 309–322. DOI: 10.3998/ark.5550190.0012.a25.
- Yamamoto, S., Hashiguchi, S., Miki, S., Igata, Y., Watanabe, T. & Shiraishi, M. (1996). Synthesis and biological activity of novel 1,3-benzoxazine derivatives as K+ channel openers. Chem. & Pharmac. Bull. 44(4), 734–745. DOI: 10.1248/cpb.44.734.
- Mizufune, H., Irie, H., Katsube, S., Okada, T., Mizuno, Y. & Arita, M. (2001). Process development of potassium channel opener, TCV-295, based on convenient ring formation of 2H-1,3-benzoxazine and selective N-oxidation of the pyridyl moiety. Tetrahedron, 57(35), 7501–7506. DOI: 10.1016/S0040-4020(01)00728-1.
- Benameur, L., Bouaziz, Z., Nebois, P., Bartoli, M.H., Boitard, M. & Fillion, H. (1996). Synthesis of furonaphth[1,3] oxazine and furo[1,3]oxazinoquinoline derivatives as precursors for an o-quinonemethide structure and potential antitumor agents. Chem. & Pharmac.l Bull. 44(3), 605–608. DOI: 10.1248/cpb.44.605.
- Chylińska, J.B., Urbański, T. & Mordarski, M. (1963). Dihydro-1,3-oxazine Derivatives and their Antitumor Activity. J. Med. Chem. 6(5), 484–487. DOI: 10.1021/jm00341a004.
- Clark, R.D., Caroon, J.M., Kluge, A.F., Repke, D.B., Roszkowski, A.P., Strosberg, A.M., Baker, S., Bitter, S.M., & Okada, M.D. (1983). Synthesis and antihypertensive activity of 4’-substituted spiro[4H-3,1-benzoxazine-4,4’-piperidin]-2(1H)-ones. J. Med. Chem. 26(5), 657–661. DOI: 10.1021/jm00359a007.
- Benedini, F., Bertolini, G., Cereda, R., Donà, G., Gromo, G., Levi, S., Mizrahi, J. & Sala, A. (1995). New antianginal nitro esters with reduced hypotensive activity. Synthesis and pharmacological evaluation of 3-[(nitrooxy)alkyl]-2H-1,3-benzoxazin-4(3H)-ones. J. Med. Chem. 38(1), 130–136. DOI: 10.1021/jm00001a018.
- Wang, S., Li, Y., Liu, Y., Lu, A. & You, Q. (2008). Novel hexacyclic camptothecin derivatives. Part 1: Synthesis and cytotoxicity of camptothecins with an A-ring fused 1,3-oxazine ring. Bioorg. & Med. Chem. Letters, 18(14), 4095–4097. DOI: 10.1016/j.bmcl.2008.05.103.
- Matsuoka, H., Ohi, N., Mihara, M., Suzuki, H., Miyamoto, K., Maruyama, N., Tsuji, K., Kato, N., Akimoto, T., Takeda, Y., Yano, K. & Kuroki, T. (1997). Antirheumatic agents: novel methotrexate derivatives bearing a benzoxazine or benzothiazine moiety. J. Med. Chem. 40(1), 105–111. DOI: 10.1021/jm9605288.
- Reddy, D.N. & Prabhakaran, E.N. (2011). Synthesis and isolation of 5,6-dihydro-4H-1,3-oxazine hydrobromides by autocyclization of N-(3-bromopropyl)amides. The J. Org. Chem. 76(2), 680–683. DOI: 10.1021/jo101955q.
- Kamble, R.D., Hese, S.V., Meshram, R.J., Kote, J.R., Gacche, R.N., & Dawane, B.S. (2014). Green synthesis and in silico investigation of dihydro-2H-benzo[1,3]oxazine derivatives as inhibitors of Mycobacterium tuberculosis. Med. Chem. Res., 24(3), 1077–1088. DOI: 10.1007/s00044-014-1165-z.
- Kumar, R., Azim, A., Kumar, V., Sharma, S.K., Prasad, A.K., Howarth, O.W., Olsen, C.E., Jain, S.C., & Parmar, V.S. (2001). Lipase-catalyzed chemo- and enantioselective acetylation of 2-alkyl/aryl-3-hydroxypropiophenones. Bioorg. & Medic. Chem. 9(10), 2643–2652. DOI: 10.1016/S0968-0896(01)00184-5.
- Joshi, N.B., Raja, A. & Parsania, P.H. (2007). Synthesis and comparative physicochemical investigation of partly aromatic cardo copolyesters. J. Appl. Polymer Sci. 106(4), 2463–2471. DOI: 10.1002/app.25063.
- Coban, Z.G., Yagci, Y. & Kiskan, B. (2021). Catalyzing the Ring-Opening Polymerization of 1,3-Benzoxazines via Thioamide from Renewable Sources. ACS Appl. Polymer Mat. 3(8), 4203–4212. DOI: 10.1021/acsapm.1c00637.
- Patil, D.R., Manikrao, M.S, Aitawade, M.M., Deshmukh, M.B., Kolekar, G. & Anbhule, P. (2011). Ecofriendly Synthesis of benzoxazines and benzothiazines at ambient temperature without catalyst and their antibacterial and anti-fungal activity. Der Pharma Chem. 3(1), 207–214.
- Khandanlou, R., Ahmad, M.B., Shameli, K., Saki, E. & Kalantari, K. (2014). Studies on Properties of Rice Straw/Polymer Nanocomposites Based on Polycaprolactone and Fe3O4 Nanoparticles and Evaluation of Antibacterial Activity. Internat. J. Molec. Sci. 15(10), 18466–18483. DOI: 10.3390/ijms151018466.
- Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J.D. & Rakariyatham, N. (2006). Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 100(3), 1044–1048. DOI: 10.1016/j.foodchem.2005.11.008.
- Srinivasan, D., Nathan, S., Suresh, T. & Lakshmana Perumalsamy, P. (2001). Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J. Ethnopharmac. 74(3), 217–220. DOI: 10.1016/s0378-8741(00)00345-7.
- Zaidan, M., et al. (2005). In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed. 22(2), 165–70. PMID: 16883283.
- Girija, D. & Hemalatha. K. (2010). Synthesis, preliminary qsar study and antimicrobial activity of some novel 2, 3-disubstituted quinazolinone derivatives. Internat. J. Pharma Biosc. 1, 254–259. Corpus ID: 99428797.
- Kimura, H., Matsumoto, A., Hasegawa, K., Ohtsuka, K. & Fukuda, A. (1998). Epoxy resin cured by bisphenol A based benzoxazine. J. Appl. Pol. Sci. 68, 1903–1910. DOI: 10.1002/(SICI)1097-4628(19980620)68:12<;1903::AID-APP2>3.0.CO;2-P.
- Burke, W.J. (1949). 3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-Substituted Phenols with N,N-Dimethylolamines. J. Amer. Chem. Soc. 71(2), 609–612. DOI: 10.1021/ja01170a063.
- Mostafavi, H., Najjar, R. & Maskani, E. (2013). Synthesis and characterization of novel 7-hydroxycoumarin derivatives. Chem. Nat. Comp. 49(3), 423–425. DOI:10.1007/s10600-013-0628-7.
- Nagorichna, I.V., Garazd, M.M., Garazd, Y.L. & Khilya, V.P. (2007). Modified coumarins. 26. Synthesis of angular dihydrooxazinocoumarins from 3-hydroxy[b,d]pyran-6-one. Chem. Nat. Comp. 43(1), 15–18. DOI: 10.1007/s10600-007-0054-9.