Have a personal or library account? Click to login
The effect of cross-linking agent amount and type on the sorption properties of starch graft polyacrylamide and poly(acrylic acid) copolymers Cover

The effect of cross-linking agent amount and type on the sorption properties of starch graft polyacrylamide and poly(acrylic acid) copolymers

Open Access
|Dec 2024

References

  1. Alvarado, S., Megia-Fernandez, A., Ortega-Muñoz, M., Hernandez-Mateo, F., Lopez-Jaramillo, F.J. & Santoyo-Gonzalez, F. (2023). Removal of the Water Pollutant Ciprofloxacin Using Biodegradable Sorbent Polymers Obtained from Polysaccharides. Polymers, 15(15), 3188. DOI: 10.3390/polym15153188.
  2. Upadhyay, U., Sreedhar, I., Singh, S.A., Patel, C.M. & Anitha, K.L. (2021). Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers. 251, 117000. DOI: 10.1016/j.carbpol.2020.117000.
  3. Xu, D., Guo, J. & Yan, F. (2018). Porous ionic polymers: Design, synthesis, and applications. Prog. Polymer Sci. 79, 121–143. DOI: 10.1016/j.progpolymsci.2017.11.005.
  4. Filimonova, E., Bergmann, T., Zhao, S., Dyatlov, V.A., Malfait, W. & Wu, T. (2024). Effect of polymer concentration and cross-linking density on the microstructure and properties of polyimide aerogels. J. Sol-Gel Sci. Technol. 110, 747–759. DOI: 10.1007/s10971-024-06390-0.
  5. Kashma, S., Vishal, S., Vijay, K. (2019). Chapter: Synthesis of Hydrogels by Modification of Natural Polysaccharides Through Radiation Cross-Linking Polymerization for Use in Drug Delivery. In book: Radiation Effects in Polymeric Materials, Springer, 269–292. DOI:10.1007/978-3-030-05770-1_8
  6. Yu, F., Yang, P., Yang, Z., Zhang, X. & Ma, J. (2021). Double-network hydrogel adsorbents for environmental applications. Chem. Engin. J. 426, 131900. DOI: 10.1016/j.cej.2021.131900.
  7. Schmidt, B., Spychaj, T. (2010). Sorption of Cu2+ and Fe3+ onto starch grafted copolymers obtained via reactive extrusion. Prz. Chem. 89,1628–1630.
  8. Agboola, O., Fayomi, O.S.I., Ayodeji, A., Ayeni, A.O., Alagbe E.E.1, Sanni S.E., Okoro, E.E., Moropeng, L., Sadiku, R., Kupolati, K.W. & Oni, B.A. (2020). A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes. 11(2), 139. DOI: 10.3390/membranes11020139.
  9. Masoumi, H., Ghaemi, A. & Gilani, H.G. (2021). Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. Separation and Purification Technology. 260, 118221. DOI: 10.1016/j.seppur.2020.118221.
  10. Shah, N., Mewada, R.K. & Mehta, T. (2016). Crosslinking of starch and its effect on viscosity behaviour. Rev. Chem. Engin. 32(2). DOI: 10.1515/revce-2015-0047.
  11. Schmidt, B., Rokicka, J., Janik, J. & Wilpiszewska, K. (2020). Preparation and Characterization of Potato Starch Copolymers with a High Natural Polymer Content for the Removal of Cu(II) and Fe(III) from Solutions. 12(11), 2562. DOI: 10.3390/polym12112562.
  12. Bekchanov, D., Mukhamediev, M., Yarmanov, S., Lieberzeit, P. & Mujahid, A. (2024). Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohyd. Polym. 323, 121397. DOI: 10.1016/j.carbpol.2023.121397.
  13. Ambika, & Singh, P.P. (2021). 11 - Natural polymer-based hydrogels for adsorption applications. Natural Polymers-Based Green Adsorbents for Water Treatment. 267–306. DOI: 10.1016/B978-0-12-820541-9.00008-9.
  14. Ashogbon, A.O. & Akintayo, E.T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch. 66, 41. DOI: 10.1002/star.201300106.
  15. De Oliveira, C.S., Andrade, M.M.P., Colman, T.A.D., da Costa, F.J.O.G. & E Schnitzler. (2014). Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. J. Thermal Anal. Calorim. 115, 13. DOI: 10.1007/s10973-013-3307-9.
  16. Schmidt, B. & Zubala, A. (2023). Rice starch as a polymer sorbent of iron cations. Polimery. 68(9), 473–479. DOI: 10.14314/polimery.2023.9.3.
  17. Guo, Q., Wang, Y., Fan, Y., Liu, X., Ren, S., Wen, Y. & Shen, B. (2015). Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 systems. Carbohyd. Polym. 117, 247–254. DOI: 10.1016/j.carbpol.2014.09.033.
  18. Okyere, A.Y., Rajendran, S. & Annor, G.A. (2022). Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Res. Food Sci. 5, 451–463. DOI: 10.1016/j.crfs.2022.02.007.
  19. Karma, V., Gupta, A.D., Yadav, D.K., Singh, A.A., Verma, M. & Singh, H. (2022). Recent Developments in Starch Modification by Organic Acids: A Review. Starch. 74, 9–10. DOI: 10.1002/star.202200025.
  20. Milanezzi, G.C. & Silva, E.K. (2025). Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohyd. Polym. 348, 122793. DOI: 10.1016/j.carbpol.2024.122793.
  21. Al-Jubory, F.K, Mujtaba, I.M. & Abbas A.S. (2020). Preparation and characterization of biodegradable crosslinked starch ester as adsorbent. AIP Conference Procideengs. 2213, 020165. DOI: 10.1063/5.0000170.
  22. Bekchanov, D., Mukhamediev, M., Eshturs, D., Lieberzeit, P. & Su, X. (2024). Cellulose- and starch-based functional materials for efficiently wastewater treatment. Polym. Adv. Technol. 35(1), e6207. DOI: 10.1002/pat.6207.
  23. Schmidt, B. (2018). Effect of crosslinking agent on potato starch grafted acrylamide copolymers and their sorption properties for water, Fe3+ and Cu2+ cations. Polim. 63, 5. DOI: 10.14314/polimery.2018.5.3.
  24. Schmidt, B. & Spychaj, T. (2010). Polish: Sorpcja Cu2+ i Fe3+ na szczepionych kopolimerach skrobi z reaktywnego wytłaczania. Prz. Chem. 89, 1628–1630.
  25. Zdanowicz, M., Schmidt, B. & Spychaj, T. (2010). Starch graft copolymers as superabsorbents obtained via reactive extrusion processing. Polish J. Chem. Technol. 12, 14. DOI: 10.2478/v10026-010-0012-3.
  26. Lawal, O.S., Lechner M.D. & Kulicke, W.M. (2008). Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: Synthesis and characterization. Internat. J. Biological Macromol. 42, 429. DOI: 10.1016/j.ijbiomac.2008.02.006.
  27. Lanthong, P., Nuisin, R. & Kiatkamjornwong, S. (2006), Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohyd. Polym. 66, 229. DOI: 10.1016/j.carbpol.2006.03.006.
  28. Kiatkamjornwong, S., Chomsaksakul, W. & Sonsuk, M. (2000). Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Physics Chem. 59, 413. DOI: 10.1016/S0969-806X(00)00297-8.
  29. Eutamene, M., Benbakhti, A., Khodja, M. & Jada, A. (2009). Preparation and Aqueous Properties of Starch-grafted Polyacrylamide Copolymers. Starch. 61, 2, 81. DOI: 10.1002/star.200800231.
  30. Tungala, K., Maurya, A., Adhikary, P., Sonker, E., Kerketta, A., Karmakar, N.C. & Krishnamoorthi, S. (2017). Flocculation characteristic of tapioca starch grafted polyacryl-amide in kaolin and opencast coal mines dust suspensions and methylene blue dye removal. Res. J. Life Sci. Bioinf. Pharmac. Chem. Sci. 2(5), 138–155. DOI: 10.26479/2017.0205.13.
Language: English
Page range: 81 - 86
Published on: Dec 31, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Beata Schmidt, Katarzyna Wilpiszewska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.