References
- Besagni, G., Gallazzini, L. & Inzoli, F. (2021). Effect of gas sparger design on bubble column hydrodynamics using pure and binary liquid phases. Chem. Eng. Sci. 176, 116–126. DOI: 10.1016/j.ces.2017.10.036.
- Hasan, M.N., Khan, A.A., Ahmad, S. & Lew, B. (2019). Anaerobic and aerobic sewage treatment plants in Northern India: Two years intensive evaluation and perspectives. Environ. Technol. Innov. 15, 100396. DOI: 10.1016/j.eti.2019.100396.
- Luty, P. & Prończuk, M. (2020). Determination of a bubble drag coefficient during the formation of single gas bubble in upward coflowing liquid. Processes, 8, 8, 999. DOI: 10.3390/pr8080999.
- Li, H. & Prakash, A. (2002). Analysis of flow patterns in bubble and slurry bubble columns based on local heat transfer measurements. Chem. Eng. J. 86, 3, 269–276. DOI: 10.1016/S1385-8947(01)00186-3.
- Takayama, S. & Akita M. (2008). Bioengineering aspects of bioreactor application in plant propagation. Plant tissue culture engineering. (pp. 83–100). Dordrecht, Springer. DOI: 10.1007/978-1-4020-3694-1_5.
- Xiaoping, G. & Ning, Y. (2017). Bubble properties measurement in bubble columns: From homogeneous to heterogeneous regime. Chem. Eng. Res. Des. 127, 103–112. DOI: 10.1016/j.cherd.2017.09.017.
- Kulkarni, A.A. & Joshi, J.B. (2005). Bubble formation and bubble rise velocity in gas− liquid systems: a review. Ind. Eng. Chem. Res. 44, 16, 5873–5931. DOI: 10.1021/ie049131p.
- Shi, S., Wang, D., Qian, Y., Sun, X., Liu, Y. & Tentner, A. (2020). Liquid-phase turbulence measurements in air-water two-phase flows using particle image velocimetry. Prog. Nuc. Energ. 124, 103334. DOI: 10.1016/j.pnucene.2020.103334.
- Di Nunno, F., Granata, F., Miozzi, M., Gargano, R., de Marinis, G., Alves Pereira, F. & Di Felice, F. (2021). Experimental study of three in-line bubbles rising in still water by means of a three-dimensional (3D) shadowgraphy technique. J. Phys. Conf. Ser. 1977, 1, 012002. DOI: 10.1088/1742-6596/1977/1/012002.
- Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Were-ley, S.T. & Kompenhans, J. (2018). Particle image velocimetry: a practical guide (3rd ed.). Springer. DOI: 10.1007/978-3-319-68852-7.
- Di Nunno, F., Alves Pereira, F., Miozzi, M., Granata, F., Gargano, R., de Marinis, G. & Di Felice, F. (2020). Experimental study of a vertical plunging jet by means of a volumetric shadowgraph technique. J. Phys. Conf. Ser. 1589, 012006. DOI: 10.1088/1742-6596/1589/1/012006.
- Zhou, X., Sun, X. & Liu, Y. (2016). Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions. Nucl. Eng. Des. 310, 534–543. DOI: 10.1016/j.nucengdes.2016.10.048.
- Nishino, K., Kato, H. & Torii, K. (2000). Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow. Meas. Sci. Technol. 11, 6, 633–645. DOI: 10.1088/0957-0233/11/6/306.
- Zaruba, A., Krepper, E., Prasser, H.M. & Vanga, B.R. (2005). Experimental study on bubble motion in a rectangular bubble column using high-speed video observations. Flow Meas. Instrum., 16, 277–287. DOI: 10.1016/j.flowmeasinst.2005.03.009.
- Butler, C., Cid, E. & Billet, A.-M. (2016). Modelling of mass transfer in Taylor flow: Investigation with the PLIFI technique. Chem. Eng. Res. Des. 115, Part B, 292–302. DOI: 10.1016/j.cherd.2016.09.001.
- Sathe, M.J., Thaker, I.H., Strand, T.E. & Joshi, J.B. (2010). Advanced PIV/LIF and shadowgraphy system to visualize flow structure in two-phase bubbly flows. Chem. Eng. Sci. 65, 8, 2431–2442. DOI: 10.1016/j.ces.2009.11.014.
- Emberson, D.R., Ihracska, B., Imran, S. & Diez, A. (2016). Optical characterization of Diesel and water emulsion fuel injection sprays using shadowgraphy. Fuel, 172, 253–262. DOI: 10.1016/j.fuel.2016.01.015.
- Nguyen, T.T., Kikura, H., Murakawa, H. & Tsuzuki, N. (2015). Measurement of Bubbly Two-phase Flow in Vertical Pipe Using Multiwave Ultrasonic Pulsed Dopller Method and Wire Mesh Tomography. Enrgy. Proced., 71, 337–351. DOI: 10.1016/j.egypro.2014.11.887.
- Rueda Villegas, L., Colombet, D., Guiraud, P., Legendre, D., Cazin, S. & Cockx, A. (2019). Image processing for the experimental investigation of dense dispersed flows: Application to bubbly flows. Int. J. Multiphas. Flow, 111, 16–30. DOI: 10.1016/j.ijmultiphaseflow.2018.10.017.
- Tompkins, C., Prasser, H.M. & Corradini, M. (2018). Wire-mesh sensors: A review of methods and uncertainty in multiphase flows relative to other measurement techniques Wire-mesh sensors: A review of methods and uncertainty in multiphase flows relative to other measurement techniques. Nucl. Eng. Des. 337, 205–220. DOI: 10.1016/j.nucengdes.2018.06.005.
- Murakawa, H., Shimizu, T. & Eckert, S. (2021). Development of a high-speed ultrasonic tomography system for measurements of rising bubbles in a horizontal cross-section. Measurement, 182, 109654. DOI: 10.1016/j.measurement.2021.109654.
- Lucas, G.P. & Mishra, R. (2005). Measurement of bubble velocity components in a swirling gas–liquid pipe flow using a local four-sensor conductance probe. Meas. Sci. Technol., 16, 749–758. DOI: 10.1088/0957-0233/16/3/018.
- Luty, P., Prończuk, M. & Bizon, K. (2022). Experimental verification of different approaches for the determination of gas bubble equivalent diameter from optical imaging. Chem. Eng. Res. Des. 185, 210–222. DOI: 10.1016/j.cherd.2022.07.008.
- Wichterle, K., Večeř, M. & Růžička, M. (2014). Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?. Chem. Pap. 68, 1, 74–79. DOI: 10.2478/s11696-013-0406-9.
- Canny, J. (1986). A computational approach to edge detection, IEEE T. Pattern Anal., PAMI-8, 6, 679–698. DOI: 10.1109/TPAMI.1986.4767851.