References
- Ordoñez, J., Gago, E.J. & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustainable Energy Rev. 60, 195–205. DOI: 10.1016/j.rser.2015.12.363.
- Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L. & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575(7781), 75–86. DOI: 10.1038/s41586-019-1682-5.
- Chen, S., Li, Z., Belver, C., Gao, G., Guan, J., Guo, Y., Li, H., Ma, J., Bedia, J. & Wójtowicz, P. (2020). Comparison of the behavior of ZVI/carbon composites from both commercial origin and from spent Li-ion batteries and mill scale for the removal of ibuprofen in water. J. Environ. Manag. 264, 110480. DOI: 10.1016/j.jenvman.2020.110480.
- Zhao, T., Yao, Y., Wang, M., Chen, R., Yu, Y., Wu, F. & Zhang, C. (2017). Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver. ACS Appl. Mater. & Interf. 9(30), 25369–25376. DOI: 10.1021/acsami.7b07882.
- Anh Nguyen, T.-H. & Oh, S.-Y. (2021). Anode carbonaceous material recovered from spent lithium-ion batteries in electric vehicles for environmental application. Waste Management, 120, 755–761. DOI: 10.1016/j.wasman.2020.10.044.
- Yan, L., Song, X., Miao, J., Ma, Y., Zhao, T. & Yin, M. (2024). Removal of tetracycline from water by adsorption with biochar: A review. J. Water Process Engin. 60, 105215. DOI: 10.1016/j.jwpe.2024.105215.
- Mostafapour, F.K., Yilmaz, M., Mahvi, A.H., Younesi, A., Ganji, F. & Balarak, D. (2022). Adsorptive removal of tetracycline from aqueous solution by surfactant-modified zeolite: Equilibrium, kinetics and thermodynamics. Desalination and Water Treatment, 247, 216–228. DOI: 10.5004/dwt.2022.27943.
- Ortiz-Ramos, U., Leyva-Ramos, R., Mendoza-Mendoza, E., Carrasco-Marín, F., Bailón-García, E., Villela-Martínez, D.E. & Valdez-García, G.D. (2024). Modeling adsorption rate of trimethoprim, tetracycline and chlorphenamine from aqueous solutions onto natural bentonite clay: Elucidating mass transfer mechanisms. Chem. Engin. J. 493, 152666. DOI: 10.1016/j.cej.2024.152666.
- Ali, M.M.M., Ahmed, M.J. & Hameed, B.H. (2018). Nay zeolite from wheat (triticum aestivum l.) straw ash used for the adsorption of tetracycline. J. Cleaner Prod. 172, 602–608. DOI: 10.1016/j.jclepro.2017.10.180.
- Sun, B., Sun, M., Zhang, J., Zhao, F., Shao, C., Yi, M., Wang, Y., Wang, X., Zhu, S. & Cai, X. (2023). Effective adsorption of tetracycline by Fe-Mn-Ce composite metal oxides: Kinetics, isotherm and mechanism. Desalination and Water Treatment, 308, 190–199. DOI: 10.5004/dwt.2023.29819.
- Selvaraj, R., Jogi, S., Murugesan, G., Srinivasan, N.R., Goveas, L.C., Varadavenkatesan, T., Samanth, A., Vinayagam, R., Ali Alshehri, M. & Pugazhendhi, A. (2024). Machine learning and statistical physics modeling of tetracycline adsorption using activated carbon derived from cynometra ramiflora fruit biomass. Environ. Res. 252, 118816. DOI: 10.1016/j.envres.2024.118816.
- Hamdi, S., Gharbi-Khelifi, H., Barreiro, A., Mosbahi, M., Cela-Dablanca, R., Brahmi, J., Fernández-Sanjurjo, M.J., Núñez-Delgado, A., Issaoui, M. & Álvarez-Rodríguez, E. (2024). Tetracycline adsorption/desorption by raw and activated tunisian clays. Environ. Res. 242, 117536. DOI: 10.1016/j.envres.2023.117536.
- Li, X., Fu, W., Guan, R., Yuan, Y., Zhong, Q., Yao, G., Yang, S.-T., Jing, L. & Bai, S. (2024). Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chin. Chem. Letters, 35(10), 109625. DOI: 10.1016/j.cclet.2024.109625.
- Fernández-Velayos, S., Sánchez-Marcos, J., Munoz-Bonilla, A., Herrasti, P., Menéndez, N. & Mazarío, E. (2022). Direct 3D printing of zero valent iron@polylactic acid catalyst for tetracycline degradation with magnetically inducing active persulfate. Sci. Total Environ. 806, 150917. DOI: 10.1016/j.scitotenv.2021.150917.
- Zhang, X., Ding, Y., Tang, H., Han, X., Zhu, L. & Wang, N. (2014). Degradation of bisphenol a by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous fenton-like catalyst: Efficiency, stability and mechanism. Chem. Engin. J. 236, 251–262. DOI: 10.1016/j.cej.2013.09.051.
- Liu, Y.-L., Zhang, C., Guo, L., Zeng, Q., Wang, R., Chen, H., Zhang, Q. & Zeng, Q. (2023). Synergistically adsorbing and reducing uranium from water by a novel nano zero-valent copper/mxene 0D/2D nanocomposite. Water Res. 245, 120666. DOI: 10.1016/j.watres.2023.120666.
- Zhou, L.Y., Chen, S., Li, H., Guo, S., Liu, Y.D. & Yang, J. (2018). EDDS enhanced shewanella putrefaciens CN32 and α-FeOOH reductive dechlorination of carbon tetrachloride. Chemosphere, 198, 556–564. DOI: 10.1016/j.chemosphere.2018.01.083.
- Yang, Z., Liu, J., Yang, S., Fan, D. & Fu, P. (2023). Graphite-modified zero-valent aluminum prepared by mechanical ball milling for selective removal of hydrophobic carbon tetrachloride. Chem. Engin. J. 474, 145591. DOI: 10.1016/j.cej.2023.145591.
- Islam, M., Arya, N., Weidler, P.G., Korvink, J.G. & Badilita, V. (2020). Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing. Mat. Today Chem. 17, 100338. DOI: 10.1016/j.mtchem.2020.100338.
- Yoshino, H., Kurosu, S., Yamaguchi, R. & Kawase, Y. (2018). A phenomenological reaction kinetic model for Cu removal from aqueous solutions by zero-valent iron (ZVI). Chemosphere, 200, 542–553. DOI: 10.1016/j.chemosphere.2018.02.127.
- Garrido-Ramírez, E.G., Theng, B.K.G. & Mora, M.L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in fenton-like reactions — A review. Appl. Clay Sci. 47(3), 182–192. DOI: 10.1016/j.clay.2009.11.044.
- Lin, S.H., Lin, C.M. & Leu, H.G. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by fenton oxidation. Water Res. 33(7), 1735–1741. DOI: 10.1016/S0043-1354(98)00403-5.
- Yamaguchi, R., Kurosu, S., Suzuki, M. & Kawase, Y. (2018). Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: Heterogeneous Fenton/Fenton-like reactions by fenton reagents formed in-situ under oxic conditions. Chem. Engin. J. 334, 1537–1549. DOI: 10.1016/j.cej.2017.10.154.
- Adel, A., Gar Alalm, M., El-Etriby, H.K. & Boffito, D.C. (2020). Optimization and mechanism insights into the sulfamethazine degradation by bimetallic ZVI/Cu nanoparticles coupled with H2O2. J. Environ. Chem. Engin. 8(5), 104341. DOI: 10.1016/j.jece.2020.104341.
- Wang, X., Wang, P., Wang, Q., Xu, P., Yang, C., Xin, Y. & Zhang, G. (2021). Efficient degradation of 4-fluorophenol under dielectric barrier discharge plasma treatment using Cu/Fe-AO-PAN catalyst: Role of H2O2 production. Chem. Engin. J. 420, 127577. DOI: 10.1016/j.cej.2020.127577.
- Gao, G., Li, Z., Chen, S., Belver, C., Lin, D., Li, Z., Guan, J., Guo, Y. & Bedia, J. (2023). Synthesis of zero-valent iron supported with graphite and plastic based carbon from recycling spent lithium ion batteries and its reaction mechanism with 4-chlorophenol in water. J. Environ. Manag. 325, 116490. DOI: 10.1016/j.jenvman.2022.116490.
- Zhang, X., Sun, W., Wang, Y., Li, Z., Huang, X., Li, T. & Wang, H. (2024). Mechanochemical synthesis of microscale zero-valent iron/N-doped graphene-like biochar composite for degradation of tetracycline via molecular O2 activation. J. Colloid Interf. Sci. 659, 1015–1028. DOI: 10.1016/j.jcis.2024.01.061.
- Wang, A., Hou, J., Feng, Y., Wu, J. & Miao, L. (2022). Removal of tetracycline by biochar-supported biogenetic sulfidated zero valent iron: Kinetics, pathways and mechanism. Water Res. 225, 119168. DOI: 10.1016/j.watres.2022.119168.
- Zhou, C., Lv, G., Zou, X., Wang, J., Chen, Y., Shen, J., Su, S., Xing, W., Fan, D. & Shen, Y. (2024). Construction of core–shell coordination sponge-Fe0@Cu-Pd trimetal for high efficient activation of room-temperature dissolved ambient oxygen toward synergistic catalytic degradation of tetracycline and p-nitrophenol. Separ. Purific. Technol. 329, 125195. DOI: 10.1016/j.seppur.2023.125195.
- Cao, J., Xiong, Z. & Lai, B. (2018). Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: Adsorption, oxidation and reduction. Chem. Engin. J. 343, 492–499. DOI: 10.1016/j.cej.2018.03.036.
- Kaur, P., Kumar, A., Babu, J.N. & Kumar, S. (2023). Tetracycline removal via three-way synergy between pistachio shell powder, zerovalent copper or iron, and peroxymonosulfate activation. J. Hazard. Mat. Adv. 12, 100385. DOI: 10.1016/j.hazadv.2023.100385.