References
- Patil, S., Jadhav, S.D., Deshmukh, M.B. & Patil, U.P. (2012). Natural acid catalyzed synthesis of Schiff base under solvent-free condition: as a green approach. Arch. App. Sci. Res. 4(2), 1074–1078. DOI: 10.4236/IJOC.2012.22025.
- Ayoubi, M., Foroughifar, N., Khajeh-Amiri, A. & Foroughifar, N. (2019). Synthesis, characterization and study the biological evaluation of some Schiff base derivatives in the presence of lemon juice catalyst. Biointerface Res. Appl. Chem. 9(4), 4187–4192. DOI: 10.33263/BRIAC94.187192.
- Lenoir, D., Schramm, K.-W. & Lalah, J.O. (2020). Green Chemistry: Some important forerunners and current issues. Sustain. Chem. Pharm., 18, 100313. DOI: 10.1016/j.scp.2020.100313.
- Dayma, V., Sharma, P., Salvi, P., Rathore, M.K. & Baroliya, P.K. (2018). Comparative study of Schiff base using various synthesis methods and their theoretical prediction of activities. IJRAT. 6(8), 1826–1832. E-ISSN: 2321-9637.
- Uddin, M.M., Ahmed, S.S. & Alam, S.R.M. (2020). Review: Biomedical applications of Schiff base metal complexes. J. Coord. Chem. 73(23), 3109–3149. DOI: 10.1080/00958972.2020.1854745.
- Mushtaq, I., Ahmad, M., Saleem, M., Ahmed, A. (2024). Pharmaceutical significance of Schiff bases: an overview. Future J. Pharm. Sci. 10(16), 1–12. DOI: 10.1186/s43094-024-00594-5.
- Patil, J.P., Shaikh, H.B., Satpute, S.K., Bhoir, R.P. & Pathan, S.K. (2021). Green synthesis and characterization of bioactive quinazolinone Schiff base. Int. J. Recent Sci. Res. 12(12(B)), 43746–43749. DOI: 10.24327/IJRSR.
- Chemchem, M., Menacer, R., Merabet, N., Bouridane, H., Yahiaoui, S., Moussaoui, S. & Belkhiri, L. (2020). Green synthesis, antibacterial evaluation and QSAR analysis of some isatin Schiff bases. J. Mol. Struct. 1208, 127853. DOI: 10.1016/j.molstruc.2020.127853.
- Sztanke, K., Maziarka, A., Osinka, A. & Sztanke, M. (2013). An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem. 21, 3648–3666. DOI: 10.1016/j.bmc.2013.04.037.
- Nielsen, I.B., Åxman, Petersen, M., Lammich, L., Brønsted Nielsen, M. & Andersen, L.H. (2006). Absorption studies of neutral retinal Schiff base chromophores. J. Phys. Chem. A 110, 12592–12596. DOI: 10.1021/jp064901r.
- Garg, A., Vijeata, A., Chaudhary, G.R., Bhalla, A. & Chaudhary, S. (2024). Unveiling the antimicrobial potency and binding interaction between sulfonamide substituted Schiff’s bases and BSA protein: An integrated experimental and theoretical approach. J. Mol. Liq. 401, 124710. DOI: 10.1016/j.molliq.2024.124710.
- Rousnara, K., Ritwik, M., Abu, S.M.I., Dolan, M., Nayim,, S., Rimi M., Gaurav, D., Nabendu, M. & Mahammad, A. (2023). Small molecule interactions with biomacromolecules: DNA binding interactions of a Manganese(III) Schiff base complex with potential anticancer activities. ACS Appl. Bio. Mater. 6, 3176–3188. DOI: 10.1021/acsabm.3c00297.
- Jiang, M., Su, X., Zhong, X., Lan, Y., Yang, F., Qin, Y. & Jiang, C. (2024). Recent development of Schiff-base metal complexes as therapeutic agents for lung cancer. J. Mol. Struct. 1318, 139403. DOI: 10.1016/j.molstruc.2024.139403.
- Podolski-Renić, A., Čipak Gašprović, A., Valente, A., López, Ó., Bormio Nunez, J.H., Kowol, C.R., Heffeter, P. & Filipović, N.R. (2024). Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur. J. Med. Chem. 270, 116363. DOI: 10.1016/j.ejmech.2024.116363.
- Chamberlain, F.E., Jones, R.L. & Chawla, S.P. (2019). Aldoxorubicin in soft tissue sarcomas. Future Oncol. 15(13), 1429–1435. DOI: 10.2217/fon-2018-0922.
- Nazli, A., Khan, M.Z.I., Rácz, Á. & Béni, S. (2024). Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur. J. Med. Chem. 276, 116699. DOI: 10.1016/j.ejmech.2024.116699.
- Thakur, S., Jaryal, A. & Bhalla, A. (2024). Recent advances in biological and medicinal profile of Schiff bases and their metal complexes: An updated version (2018-2023). Results in Chemistry 7, 101350. DOI: 10.1016/j.rechem.2024.101350.
- Mahmood, A.A. (2021). Green synthesis of Schiff bases: a review study. Irq. J. Pharm. 18(2), 180–193. DOI: 10.33899/jphr.2022.170406.
- Arafa, W.A.A. & Shaker, R.M. (2016). Facile green chemistry approaches towards the synthesis of bis-Schiff bases using ultrasound versus microwave and conventional method without catalyst. ARKIVOC, part iii, 187–201 DOI: 10.3998/ark.5550190.p009.464.
- Bedi, P., Malkania, L., Gupta, R. & Pramanik, T. (2018). Microwave-assisted green synthesis of Schiff bases in lemon juice medium. Res. J. Chem. Environ. 22(8) 19–23 DOI:
- Dhedana R.M., Alsahiba S.A. & Ali R.A. (2023). A brief review on Schiff base, synthesis, and their antimicrobial activities. Russ. J. Bioorganic Chem. 49(1), S31-S52. DOI: 10.1134/S1068162023080046.
- Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J. & Madaj, J. (2022). Different Schiff bases – structure, important, and classification. Molecules 27, 787. DOI: 10.3390/molecules27030787.
- Santos Alves dos Santos, J., Mol Lima, R., Vilela Pereira, T., Resende do Carmo, A.M., Rezende Barbosa Raposo, N. & da Silva, A.D. (2013). Antioxidant activity of thio-Schiff base. Lett. Drug Des. Discov. 10(7), 557–560. DOI: 10.2174/1570180811310070002.
- Thakur, S. & Bhalla, A. (2024). Sustainable synthetic endeavors of pharmaceutically active Schiff bases and their metal complexes: A review on recent reports. Tetrahedron 153, 133836. DOI: 10.1016/j.tet.2024.133836.
- Aljamali, N.M., Alasady, D. & Hassen, H.S. (2021). Review on azomethine-compounds with their applications. IJCSCR 7(2), 1-10. DOI: 10.37628/IJCSCR.
- Pustenko, A., Nocentini, A., Gratteri, P., Bonardi, A., Vozny, I., Žalubovskis, R. & Supuran, C.T. (2020). The antibiotic furagin and its derivatives are isoform-selective human carbonic anhydrase inhibitors. J. Enzyme. Inhib. Med. Chem. 35(1), 1011–1020. DOI: 10.1080/14756366.2020.1752201.
- Franco-Paredes, C., Garcia-Creighton, E., Henao-Martínez, A., Kallgren, D.L., Banjade, R., Dyer, J.A., Nelson, T., Zaesim, A., Peluso,, M.J., Jain, V., Heun, Lee, D., Minces, L.R., Wirshup M., Sierra Hoffman M., Katsolis J., Brust K., Giron J., Smiarowski L., Hoosepian-Mer, P.A. & Stryjewska, B. (2022). Novel approaches in the treatment of Hansen’s disease (Leprosy): a case series of multidrug therapy of monthly rifampin, moxifloxacin, and minocycline (RMM) in the United States. Ther. Adv. Infect. Dis. 9, 1–10. DOI: 10.1177/20499361221135885.
- Reddy, G.N., Losetty, V. & Yadav, H. (2023). Synthesis of novel Schiff base metal complexes and their spectroscopic characterization, biological activity, and molecular docking investigation. J. Mol. Struct. 1282, 135161. DOI: 10.1016/j.molstruc.2023.135161.
- Soroceanu, A. & Bargan, A. (2022). Advanced and biomedical applications of Schiff-base ligands and their metal complexes: A Review. Crystals 12, 1436. DOI: /10.3390/cryst12101436.
- Yadav, P., Sarkar, A. & Kumar, A. (2019). Synthesis and biological activities of Schiff bases and their derivatives: a review of recent work. J. Basic Appl. Eng. Res. 6(1), 62–65. e-ISSN: 2350-0255.
- Sakthivel, R.V., Sankudevan, P., Vennila, P., Venkatesh, G., Kaya, S. & Serdaroğlu, G. (2021). Experimental and theoretical analysis of molecular structure, vibrational spectra and biological properties of the new Co(II), Ni(II) and Cu(II) Schiff base metal complexes. J. Mol. Struct. 1233, 130097. DOI: 10.1016/j.molstruc.2021.130097.
- Tsacheva, I., Todorova, Z., Momekova, D., Momekov, G. & Koseva, N. (2023). Pharmacological activities of Schiff bases and their derivatives with low and high molecular phosphonates. Pharmaceuticals 16, 938. DOI: 10.3390/ph16070938.
- Weisner, P.S., Bower, G.R., Dollimore, L.A., Forster, A.M., Higley, B. & Storey, A.E. (1993). A method for stabilising technetium-99m exametazime prepared from a commercial kit. Eur. J. Nucl. Med. 20 (8), 661–666. DOI: 10.1007/BF00181755.
- Hussain, S. & Berry, S. (2024). A review study on green synthesis of chitosan derived Schiff base and their applications. Carbohydrate Res. 535, 109002, 1–20. DOI: 10.1016/j.carres.2023.109002.
- Mirza-Agyahan, M., Heidarian, M. & Alizadeh, M. (2024). Pd-Isatin-Schiff base complex supported on graphene oxide as a catalyst for the Sonogashira cross-coupling reaction. J. Organomet. Chem. 1009, 123079. DOI: 10.1016/j.organchem.2024.123079.
- Juyal, V.K., Pathak, A., Panwar, M., Thakuri, S.C., Prakash, O., Agrwal, A. & Nand, V. (2023). Schiff base metal complexes as a versatile catalyst: A review. J. Organomet. Chem. 999, 122825. DOI: 10.1016/j.jorganchem.2023.122825.
- Godzwon, J., Sienkowska, M.J. & Galewski, Z. (2009). Liquid-crystalline properties of 4-octyloxybenzylidene-4’-alkoxyanilines and their mixtures with 4-pentyloxybenzylidene-4’-heptylaniline. Termochim. Acta 491(1-2), 71–79. DOI: 10.1016/j.tca.2009.03.004.
- Schadt, M. & Helfrich, W. (1970). Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl. Phys. Lett. 18(4), 127–128. DOI: 10.1063/1.1653593.
- Rubab, L., Anum, A., Al-Hussain, S.A., Irfan, A., Ahmad, S., Ullah, S., Al-Mutairi, A.A. & Zaki, M.E.A. (2022). Green chemistry in organic synthesis: Recent update on green catalytic approaches in synthesis of 1,2,4-thiadiazoles. Catalysts 12, 1329. DOI: 10.3390/catal12111329.
- Kharissova, O.V., Kharisov, B.I., González, C.M.O., Méndez, Y.P. & López, I. (2019). Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 6, 191378. DOI: 10.1098/rsos.191378.
- 41.Fabrizzi, L. (2020). Beauty in Chemistry: Making Artistic Molecules with Schiff Bases. J. Org. Chem. 85, 12212–12226.
- Vázquez, M.Á., Landa, M., Reyes, L., Miranda, R., Tamariz, J. & Delgado, F. (2004). Infrared irradiation: Effective promoter in the formation of N-benzylideneanilines in the absence of solvent. Synth. Commun. 34(15), 2705–2718. DOI: 10.1081/SCC-200026190.
- Pathan, I.R. & Patel, M.K. (2023). A comprehensive review on the synthesis and applications of Schiff base ligand and metal complexes: A comparative study of conventional heating, microwave heating, and sonochemical methods. Inorg. Chem. Commun. 158, 111464. DOI: 10.1016/j.inoche.2023.111464.
- Sunil, K., Kumara, T.P.P., Kumar, B.A. & Patel, S.B. (2021). Synthesis, characterization, and antioxidant activity of Schiff base compounds obtained using green chemistry techniques. Pharm. Chem. J. 55(1), 46–53. DOI: 10.1007/s11094-021-02370-8.
- Cros, G. & Laurent, J.-P. (1988). Unusual dinuclear Copper(I1) and Nickel(I1) complexes of a novel Schiff base deriving from 2-aminoethanol. Inorg. Chim. Acta 142, 113–117. DOI: 10.1016/S0020-1693(00)80668-4.
- Oki, A.R. & Hodgson, D.J. (1990). Synthesis, characterization, and catalytic properties of Manganese (III) Schiff base complexes. Inorg. Chim. Acta 170, 65–73. DOI: 10.1016/S0020-1693(00)80410-7.
- Dance, J.M., Gambardella, M.T. do P., Santos, R.H. de A., Medina, E., Manrique, F.G. & Palacios, M.S. (1989). Synthesis and characterization of Copper(I1) complexes with a tridentate Schiff base ligand derived from 5-chloro-2-hydroxyacetophenone and salicylhydrazide. X-ray structure of Copper(H) (5-chloro-2-hydroxyacetophenone-salicylhydrazide) dimethylformamide. Inorg. Chim. Acta 162, 239–244. DOI: 10.1016/S0020-1693(00)83154-0.
- Al-Mosawy, M.G.A.-A. (2023). Review of the biological effects of Schiff bases and their derivatives, including their synthesis. Med. Sci. J. Adv. Res. 4(2), 67–85. DOI: 10.46966/msjar.v4i2.117.
- Lopez, J., Mintz, E.A., Hsu, F.-L. & Bu, X.R. (1998). Novel unsymmetric chiral Schiff bases possessing two different donor moieties: unique tetradentate ligands from combination of salicylaldehyde and acetylacetone units. Tetrahedron: Asymmetry 9, 3741–3744. DOI: 10.1016/S0957-4166(98)00401-7.
- Hashem, H.E., Mohamed, E.A., Farag, A.A., Negm, N.A. & Azmy, E.A.M. (2021). New heterocyclic Schiff base-metal complex: Synthesis, characterization, density functional theory study, and antimicrobial evaluation. Appl. Organomet. Chem. e6322. DOI: 10.1002/aoc.6322.
- Kobayashi, M., Akitsu, T., Furuya, M., Sekiguchi, T., Shoji, S., Tanii, T. & Tanaka, D. (2023). Efficient synthesis of a Schiff base Copper (II) complex using a microfluidic device. Micromachines 14, 890. DOI: 10.3390/mi14040890.
- Jain, A., De S. & Barman, P. (2022). Microwaveassisted synthesis and notable applications of Schiffbase and metal complexes: a comparative study. Res. Chem. Intermediat. 48, 2199–2251. DOI: 0.1007/s11164-022-04708-7.
- Forte, G., Oliveri, I.P., Consiglio, G., Failla, S. & di Bella, S. (2017). On the Lewis acidic character of bis(salicylaldiminato)zinc (II) Schiff-base complexes: a computational and experimental investigation on a series of compounds varying the bridging diamine. Dalton Transactions 46(14), 4571–4581. DOI: 10.1039/C7DT00574A.
- Sawicz, B., Kołodziej, B. & Rozwadowski, Z. (2020). Wpływ doboru metody syntezy wybranych aromatycznych zasad Schiffa na wydajność reakcji. In Conference TYGIEL: Wybrane zagadnienia z zakresu inżynierii chemicznej i procesowej. 24-27 September 2020 (pp. 247–261) Lublin.
- Rajarajana, M., Vijayakumara, R., Selvaraj Balajia, S., Senbagama, R., Manikandana, V., Vanangamudia, G. & Thirunarayanan, G. (2016). Eco-friendly Synthesis, Spectral Correlation Analysis, and Antimicrobial Activities of Substituted (E)-1-benzylidene-2-(3-nitrophenyl) hydrazines. Orbital: Electron. J. Chem. 8, 288–299. DOI: 10.17951/aa.2015.70.2.103.
- Nagar, S., Raizada, S. & Tripathee, N. (2023). A review on various green methods for synthesis of Schiff base ligands and their metal complexes. Res. Chem. 6, 101153. DOI: 10.1016/j.rechem.2023.101153.
- Metzger, J. (1998). Solvent-free organic synthesis. Angew. Chem. Int. Ed. 37(21), 2975–2978. DOI: 10.1002/(SICI)1521--3773(19981116)37:21<;2975::AID-ANIE2975>3.0.CO;2-A
- Tanaka, K. & Toda, F. (2000). Solvent-free organic synthesis. Chem. Rev. 100, 1025–1074. DOI: 10.1021/cr940089p.
- Bendale, A.R., Borse, M., Borse, L., Pathan, V. & Jadhav, A. (2022). Green Techniques to synthesize Schiff bases. Adv. Res. Org. Inorg. Chem. 3:1011. DOI: 10.54026/AROIC/1011.
- Pervaiz, M., Shahin, M., Ejaz, A., Quratulain, R., Saeed, Z., Ashraf, A., Khan, R.R.M., Bukhari, S.M., Ullah, S. & Younas, U. (2024). An overview of Aniline-Based Schiff base metal Complexes: Synthesis, characterization, and biological activities – a review. Inorg. Chem. Commun. 159, 111851. DOI: 10.1016/j.inoche.2023.111851.
- Bendale, A.R., Bhatt, R., Nagar, A., Jadhav, A.G. & Vidyasagar, G. (2011). Schiff base synthesis by unconventional route: An innovative green approach. Der Pharma Chemica 3(2), 34–38.
- Tigineh, G.T., Wen, Y. & Liu, L. (2015). Solvent-free mechanochemical conversion of 3-ethoxysalicylaldehyde and primary aromatic amines to corresponding Schiff-bases. Tetrahedron 71, 170–175. DOI: 10.1016/j.tet.2014.10.074.
- Albayrak, Ç., Kaştaş, G., Odabaşoğlu, M. & Büyükgüngör, O. (2011). Probing the compound (E)-2-[(4-bromophenylimino) methyl]-6-ethoxyphenol mainly from the point of tautomerism in solvent media and the solid state by experimental and computational methods. J. Mol. Struct. 1000, 162–170. DOI: 10.1016/j.molstruc.2011.06.018.
- Boussaid, M.O., Belmessaoud, R., Nasri, A., Ladjel, S., Djafri, F. & Djafri, A. (2012). 1st Intenational Days of Organometallic Chemistry and Catalysis JICOC, 127–130.
- Verma, R., Lamba, NP., Dandia, A., Srivastava, A., Modi, K., Chauhan, M.S. & Prasad, J. (2022). Synthesis of Nbenzylideneaniline by Schiff base reaction using Kinnow peel powder as green catalyst and comparative study of derivatives through ANOVA techniques. Sci. Rep. 12, 9636 (2022). DOI: 10.1038/s41598-022-13360-5.
- Veni, K., Karthik, D., Geetha, K. & Shakila, D. (2017). Green Synthesis, Characterisation, Corrosion Inhibition and Biological Applications of Schiff Base Transition Metal Complexes. J. Pharm., 62–68. (e)-ISSN: 2250-3013.
- Bedi, P., Pramanik, G. & Pramanik, T. (2020). Garlic catalyzed and grindstone assisted solvent free green synthesis of pharmaceutically important Schiff bases. Res. J. Pharm. Technol. 13(1), 152–156. DOI: 10.5958/0974-360X.2020.00030.X.
- Kannaiyan, S., Easwaramoorthy, Kannan, K. & Andal, V. (2022). Green synthesis of Phenothiazinium Schiff base and its nano silver complex using egg white as a catalyst under solvent free condition. Materials Today: Proc. 55, 267–273. DOI: 10.1016/j.matpr.2021.07.121.
- Banerjee, M., Panjikar, P.C., Das, D., Iyer, S., Bhosle, A.A. & Chatterjee, A. (2022). Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles. Tetrahedron 112, 132753. DOI: 10.1016/j.tet.2022.132753.
- Xing, H. & Yaylayan, V. (2020). Mechanochemical generation of Schiff bases and Amadori products and utilization of diagnostic MS/MS fragmentation patterns in negative ionization mode for their analysis. Carbohydrate Res. 495, 108091. DOI: 10.1016/j.carres.2020.108091.
- Zangade, S. & Patil, P. (2019). A Review on Solvent-free Methods in Organic Synthesis. Curr. Org. Chem. 23, 2295–2318. DOI: 10.2174/1385272823666191016165532.
- Kishore, K., Sinha, M.K., Singh, A., Archana, Gupta, M.K. & Korkmaz, E.M. (2022). A comprehensive review on the grinding process: Advancements, applications, and challenges. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236(22), 1–30. DOI: 10.1177/09544062221110782.
- Yousef, T. (2020). Structural, optical, morphology characterization and DFT studies of nano sized Cu (II) complexes containing Schiff base using green synthesis. J. Mol. Struct. 1215, 128180. DOI: /10.1016/j.molstruc.2020.128180.
- Clark,e C.J., Tu, W.-C., Levers, O., Bröhl, A. & Hallet, J.P. (2018). Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 118, 747–800. DOI: 10.1021/acs.chemrev.7b00571.
- Raju, S.K., Settu, A., Thiyagarajan, A., Rama, D., Sekar, P. & Kumar, S. (2022). Biological applications of Schiff bases: An overview. GSC Biol. Pharm. Sci. 21(3), 203–215. DOI: 10.30574/gscbps.
- Jarrahpour, A.A. & Khalili, D. (2006). Synthesis of some new bis-Schiff bases of isatin and 5-fluoroisatin in a water suspension medium. Molecules 11(1), 59–63. DOI: 10.3390/11010059.
- Zarei, M. & Jarrahopur, A. (2011). Green and efficient synthesis of azo Schiff bases. IJST A3, 235–242. DOI: 10.22099/IJSTS.2011.2148.
- Rao, V.K., Reddy, S.S., Krishna, B.S., Naidu, K.R.M., Raju, C.N. & Ghosh, S.K. (2010). Synthesis of Schiff’s bases in aqueous medium: a green alternative approach with effective mass yield ang high reaction rates. Green Chem. Lett. Rev. 3(3), 217–223. DOI: 10.1080/17518251003716550.
- Solomons, G.T.W., Fryhle, C.B. & Snyder, S.A. (2016). Solomon’s Organic Chemistry (12th ed.). John Wiley & Sons Inc., vol. 2, chapter 16.
- Yaseen, A.A., Al-Tikrity, E.T.B., Al-Mashadani, M.H., Salih, N. & Yousif, E. (2021). An Overview: Using Different Approaches to Synthesis New Schiff Bases Materials. J. Univ. Anbar for Pure Sci. (JUAPS) 15(2), 53–59. DOI: 10.37652/juaps.2022.172453.
- Sravanthi, M., Kavitha, B. & Reddy, P.S. (2019). Green route for efficient synthesis of biologically active Schiff base ligand derived from 2-hydroxy acetophenone: structural, spectroscopic, anti microbial and molecular modeling studies. Int. Res. J. Pharm. 10(3), 215–220. DOI: 10.7897/2230-8407.1003107.
- Bakht, M.A. (2015). Lemon juice catalyzed Ultrasound assisted synthesis of Schiff’s base: a total green approach. Bull. En v. Pharmacol. Life Sci. 4(10), 94–100. ISSN: 2277-1808.
- Alikhani, A., Foroughifar, N. & Pasdar, H. (2018). Lemon juice as a natural catalyse for synthesis of Schiff’s base: A Green Chemistry approach. Int. J. Adv. Eng. Res. Sci. 5(2), 61–65. DOI: 10.22161/ijaers.5.2.7.
- Yadav, G. & Mani, J.V. (2015). Green Synthesis of Schiff Bases by Using Natural Acid Catalysts. Int. J. Sci. Res. 4(2), 121–127. ISSN: 2319-7064.
- Daniel, A.S.S. (2017). Synthesis, characterization, and antimicrobial activity of Schiff base from benzaldehyde and para-toluidine using gooseberry extract. Int. J. Latest Trends Eng. Technol. In Conferrence: International Conference on Nanotechnology: The Fruition of Science-2017, pp.036–039. e-ISSN:2278-621X.
- Simkova, K., Veberic R., Hudina M., Grohar M.C., Ivancic T., Smrke T., Pelacci M. & Jakopic J. (2023). Berry size and weight as factors influencing the chemical composition of strawberry fruit. J. Food Compost. Anal. 123, 105509. DOI: 10.1016/j.jfca.2023.105509.
- Klimek-Szczykutowicz, M., Szopa, A. & Ekiert, H. (2020). Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 9, 119. DOI: 10.3390/plants9010119.
- Shukla, M., Kulshrashtha, H. & Seth, D.S. (2017). Comparative Study of the Schiff Bases by Conventional and Green Method and Antimicrobial Activity. Int. J. Mater. Sci. 12(1), 71–76. ISSN: 0973-4589.
- Manjare, S.B., Mahadik, R.K., Manval, K.S., More, P.P. & Dalvi, S.S. (2023). Microwave-assisted rapid and green synthesis of Schiff bases using cashew shell extract as a natural acid catalyst. ACS Omega 8, 473–479. DOI: 10.1021/acsomega.2c05187.
- Silverberg, L.J., Pacheco, C., Lagalante, A., Tierney, J., Bachert, J.T., Bayliff, A., Bendinsky, R.V., Cali, A.S., Chen, L., Cooper, A.D., Minehan, M.J., Mroz, C.R., Noble, D.J., Weisbeck, A.K., Xie, Y. & Yang, Z. (2016). Synthesis and spectroscopic properties of a series of novel 2-aryl-3-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-ones. ARKIVOC Part vi, 122–143. DOI: 10.24820/ark.5550190.p009.875.
- Bargujar, S., Ratnani, S. & Jain, R. (2024). Recent advances in microwave assisted synthesis of Schiff base metal complexes. Inorg. Chem. Commun. 162, 112250, 1–17. DOI: 10.1016/j.inoche.2024.112250.
- Shntaif, A.H. & Rashid, Z.M. (2016). The synthesis of Schiff bases under microwave irradiation: Review. J. Chem. Pharm. Sci. 9(3), 1–3. ISSN: 0974-2115.
- Mersellem, M., Hellal, A. & Benhamou, A. (2021). Microwave assisted synthesis of 4-aminophenol Schiff bases: DFT computations, QSAR/Drug-likeness properties, and antibacterial screening. J. Mol. Struct. 1241, 130666. DOI: 10.1016/j.molstruc.2021.130666.
- Suresh, R., Kamalakkannan, D., Ranganathan, K., Alurkumaran, R., Sundararajan, R., Sakthinathan, S.P., Vijayakumar, S., Sathiyamoorthi, K., Mala, V., Vanangamudi, G., Thirumurthy, K., Mayavel, P. & Thirunayaranan, G. (2013). Solvent-free synthesis, spectral correlations, and antimicrobial activities of some aryl imines. Spetrochim. Acta Part A: Mol. Biomol. Spectrosc. 101, 239–248. DOI: 10.1016/j.saa.2012.09.039.
- Premalatha, R. & Santhi, N. (2014). Ultrasonic assisted synthesis, acoustical property, and antibacterial activity of some Schiff bases. Int. Lett. Chem., Phys. Astronomy 14(1), 53–64. ISSN: 2299-3843.
- Kargar, H., Fallah-Mehrjardi, M., Behjatmanesh-Ardakani, R., Torabi, V., Munawar, K.S., Ashfaq, M. & Tahir, M.N. (2021). Sonication-assisted synthesis of new Schiff bases derived from 3-ethoxysalicylaldehyde: Crystal structure determination, Hirshfeld surface analysis, theoretical calculations, and spectroscopic studies. J. Mol. Struct. 1243, 130782. DOI: 0.1016/j.molstruc.2021.1307820022-2860.