Have a personal or library account? Click to login
Phase Transformations in Alloy Steel Containing Boron Using Dilatometry and Acoustic Emission Cover

Phase Transformations in Alloy Steel Containing Boron Using Dilatometry and Acoustic Emission

Open Access
|Dec 2024

References

  1. Bhadeshia, H.K.D.H. (2001). Bainite in Steels, 2-nd ed. London. The Institute of Materials.
  2. Hui, W., Zhang, Y., Shao, Ch., Chen, S., Zhao, X., Dong, H. (2016). Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel. J. Mater. Sci. Technol. DOI: 10.1016/j.jmst.2016.01.006.
  3. Gao, Q., Liu, Y., Di, X., Yu, L., Yan, Z., Qiao, Z. (2013). Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel. Nucl. Eng. Des. 256, 148–152. DOI: 10.1016/j.jallcom.2014.05.060.
  4. Kawulok, P., Schindler, I., Mizera, J., Kawulok, R., Rusz, S., Opěla, P., Olszar, M., čmiel, K.M. (2018). The influence of a cooling rate on the evolution of microstructure and hardness of the steel 27MnCrB5. Arch. Metall. Mater. 63, 2, 907–914. DOI: 10.24425/122421.
  5. Morri, A., Ceschini, L., Pellizzari, M., Menapace, C., Vettore, F., Veneri, E. (2017). Effect of the austempering process on the microstructure and mechanical properties of 27MnCrB5-2 steel, Arch. Metall. Mater. 62, 2, 643–651. DOI: 10.1515/amm-2017-0094.
  6. Menczel, J.D., Prime, R.B. (Eds.), (2014). Thermal Analysis of Polymers: Fundamentals and Applications, John Wiley & Sons, Inc., Hoboken.
  7. Basu, B., Vleugels, J., Van Der Biest, O. (2004). Transformation behaviour of tetragonal zirconia: role of dopant content and distribution, Mater. Sci. Eng. A. DOI: 10.1016/j.msea.2003.08.063.
  8. Trusova, E.A., Khrushcheva, A., Vokhmintcev, K.V,. Titov, D. (2013). Dilatometric sintering study of fine-grained ceramics from ultradispersed admixture composed of Ce0.09Zr0.91O2 and MgO–Al2O3, J. Eur. Ceram Soc. DOI: 10.1016/j.jeurceramsoc.2013.01.040.
  9. Rabarijoely, S. (2008). The use of dilatometer test for the determination of undrained shear strength in organic soils. Department of Geotechnical Engineering.
  10. Hunkel, M., Surm, H., Steinbacher, M. (2018). Dilatometry. Handbook of Thermal Analysis and Calorimetry.
  11. Krbaťa, M., Cíger, R. (2021). Dilatometric analysis tool steel X153CrMoV12, Sci. & Military, 16(1),14–18. DOI: 10.52651/sam.a.2021.1.14-18.
  12. Ahmed, I., Zaky, F. (2008). Dilatometry determination of phase transformation temperatures during heating of Nb bearing low carbon steels, J. Mater. Process. Technol. Volume 204, Issues 1–3 11 Pages 365–369. DOI: 10.1016/j.jmatprotec.2007.11.097.
  13. Malecki, I., Ranachowski, J. (1994). Emisja Akustyczna. Źródła. Metody. Zastosowania, Wydaw. Pascal (in Polish).
  14. Łazarska, M., Woźniak, T.Z., Ranachowski, Z., Trafarski, A., Domek, G. (2017). Analysis of acoustic emission signals at austempering of steels using neural networks, Met. Mater. Int., 23, 426–433, 2017. DOI: 10.1007/s12540-017-6347-z.
  15. Łazarska, M., Woźniak, T.Z., Ranachowski, Z., Trafarski, A., Marciniak, S. (2021). The Use of Acoustic Emission and Neural Network in the Study of Phase Transformation below Ms. Materials, 14, 551. DOI: 10.3390/ma14030551.
  16. Kiesewetter, N., Schiller, P. (1976). The acoustic emission from moving dislocation in aluminium, Phys. Stat. 38, 569–575. DOI: 10.1002/pssa.2210380218.
  17. Speich, G.R., Schwoeble, A.J. (1975). Acoustic emission during phase transformation in steel. 571. 40–58.
  18. Van Bohemen, S.M.C. (2004). An acoustic emission study of martensitic and bainitic transformations in carbon steel, University Press Delft.
  19. Planes, A., Mañosa, L., Vives, E. 2013. Acoustic emission in martensitic transformations, J. Alloys Compd. 577, 699–704. DOI: 10.1016/j.jallcom.2011.10.082.
  20. Xiao, R., Jiang, X., Zhang, M., Polaczyk, P., Huang, B. (2020). Analytical investigation of phase assemblages of alkali-activated materials in CaO-SiO2-Al2O3 systems: The management of reaction products and designing of precursors. Mater. Des. 194. DOI: 10.1016/j.matdes.2020.108975.
  21. Ozgen, S., Adiguzel, O. (2004). Investigation of the thermoelastic phase transformation in a NiAl alloy by molecular dynamics simulation. J. Phys. Chem. Solids. 65, 861–865. DOI: 10.1016/j.jpcs.2003.09.004.
  22. Pawełek, A. (1989). On the Dislocation-Dynamic Theory of the Portevin-Le Châtelier Effect, Z. Metallkunde, IJMR. 80, 614–618. DOI: 10.1515/ijmr-1989-800902.
  23. Pawełek, A. (2006). Dyslokacyjne aspekty emisji akustycznej w procesach odkształcenia plastycznego metali. Polska Akademia Nauk, Instytut Metalurgii Inżynierii Materiałowej w Krakowie, Wydaw. OREKOP S.C., Kraków (in Polish).
  24. Eshelby, D. (1962).The distortion and electrification of plates and rods by dislocations, Physica Status Solidi. 2, 1021–1028. DOI: 10.1002/pssb.19620020807.
  25. Rejmund, F. (1981). Związek emisji akustycznej z ruchem dyslokacji w kryształach. Rozp. Dokt. IPPT PAN (in Polish).
  26. Pawełek, A., Kuśnierz, J., Bogucka, J., Jasieński, Z., Ranachowski, Z., Ranachowski, P., Rajmund, F., Dębowski, T. (2007). Acoustic emission and the Portevin – Le Châtelier effect in tensile tested Al alloys processed by ARB technique, Arch. Acoust., 32, 4, 955–962.
  27. Pieczyska, E.A., Tobushi, H., Takeda, K., Stróż, D., Ranachowski, Z., Kulasiński, K., Kúdela, Jr S., Luckner, J. (2012). Martensite transformation bands studied in TiNi shape memory alloy by infrared and acoustic emission techniques, Kovove Mater.–Metallic Mater. 50, 309–318, 2012. DOI: 10.4149/km_2012_5_309.
  28. Panasiuk, K., Kyziol, L., Dudzik, K. and Hajdukiewicz, G. (2020). “Application of the Acoustic Emission Method and Kolmogorov-Sinai Metric Entropy in Determining the Yield Point in Aluminium Alloy,” Mater., vol. 13, p. 1386, 2020. DOI: 10.3390/ma13061386.
  29. Botten, R., Wu, X. Hu, D. and Loretto, M.H. (2001). “The significance of acoustic emission during stressing of TiAl-based alloys,” Acta Mater. 49, 1687–1691. DOI: 10.1016/S1359-6454(01)00091-X.
  30. Lambert, A., Garat, X., Sturel, T., Gourgues, A.F., and Gingell, A. (2000). “Aplication of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel,” Scripta Mater. 43, 161–166. DOI: 10.1016/S1359-6462(00)00386-9.
Language: English
Page range: 34 - 38
Published on: Dec 31, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Małgorzata Łazarska, Aleksandra Piotrowska, Joanna Paciorek-Sadowska, Zbigniew Ranachowski, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.