References
- Bhadeshia, H.K.D.H. (2001). Bainite in Steels, 2-nd ed. London. The Institute of Materials.
- Hui, W., Zhang, Y., Shao, Ch., Chen, S., Zhao, X., Dong, H. (2016). Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel. J. Mater. Sci. Technol. DOI: 10.1016/j.jmst.2016.01.006.
- Gao, Q., Liu, Y., Di, X., Yu, L., Yan, Z., Qiao, Z. (2013). Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel. Nucl. Eng. Des. 256, 148–152. DOI: 10.1016/j.jallcom.2014.05.060.
- Kawulok, P., Schindler, I., Mizera, J., Kawulok, R., Rusz, S., Opěla, P., Olszar, M., čmiel, K.M. (2018). The influence of a cooling rate on the evolution of microstructure and hardness of the steel 27MnCrB5. Arch. Metall. Mater. 63, 2, 907–914. DOI: 10.24425/122421.
- Morri, A., Ceschini, L., Pellizzari, M., Menapace, C., Vettore, F., Veneri, E. (2017). Effect of the austempering process on the microstructure and mechanical properties of 27MnCrB5-2 steel, Arch. Metall. Mater. 62, 2, 643–651. DOI: 10.1515/amm-2017-0094.
- Menczel, J.D., Prime, R.B. (Eds.), (2014). Thermal Analysis of Polymers: Fundamentals and Applications, John Wiley & Sons, Inc., Hoboken.
- Basu, B., Vleugels, J., Van Der Biest, O. (2004). Transformation behaviour of tetragonal zirconia: role of dopant content and distribution, Mater. Sci. Eng. A. DOI: 10.1016/j.msea.2003.08.063.
- Trusova, E.A., Khrushcheva, A., Vokhmintcev, K.V,. Titov, D. (2013). Dilatometric sintering study of fine-grained ceramics from ultradispersed admixture composed of Ce0.09Zr0.91O2 and MgO–Al2O3, J. Eur. Ceram Soc. DOI: 10.1016/j.jeurceramsoc.2013.01.040.
- Rabarijoely, S. (2008). The use of dilatometer test for the determination of undrained shear strength in organic soils. Department of Geotechnical Engineering.
- Hunkel, M., Surm, H., Steinbacher, M. (2018). Dilatometry. Handbook of Thermal Analysis and Calorimetry.
- Krbaťa, M., Cíger, R. (2021). Dilatometric analysis tool steel X153CrMoV12, Sci. & Military, 16(1),14–18. DOI: 10.52651/sam.a.2021.1.14-18.
- Ahmed, I., Zaky, F. (2008). Dilatometry determination of phase transformation temperatures during heating of Nb bearing low carbon steels, J. Mater. Process. Technol. Volume 204, Issues 1–3 11 Pages 365–369. DOI: 10.1016/j.jmatprotec.2007.11.097.
- Malecki, I., Ranachowski, J. (1994). Emisja Akustyczna. Źródła. Metody. Zastosowania, Wydaw. Pascal (in Polish).
- Łazarska, M., Woźniak, T.Z., Ranachowski, Z., Trafarski, A., Domek, G. (2017). Analysis of acoustic emission signals at austempering of steels using neural networks, Met. Mater. Int., 23, 426–433, 2017. DOI: 10.1007/s12540-017-6347-z.
- Łazarska, M., Woźniak, T.Z., Ranachowski, Z., Trafarski, A., Marciniak, S. (2021). The Use of Acoustic Emission and Neural Network in the Study of Phase Transformation below Ms. Materials, 14, 551. DOI: 10.3390/ma14030551.
- Kiesewetter, N., Schiller, P. (1976). The acoustic emission from moving dislocation in aluminium, Phys. Stat. 38, 569–575. DOI: 10.1002/pssa.2210380218.
- Speich, G.R., Schwoeble, A.J. (1975). Acoustic emission during phase transformation in steel. 571. 40–58.
- Van Bohemen, S.M.C. (2004). An acoustic emission study of martensitic and bainitic transformations in carbon steel, University Press Delft.
- Planes, A., Mañosa, L., Vives, E. 2013. Acoustic emission in martensitic transformations, J. Alloys Compd. 577, 699–704. DOI: 10.1016/j.jallcom.2011.10.082.
- Xiao, R., Jiang, X., Zhang, M., Polaczyk, P., Huang, B. (2020). Analytical investigation of phase assemblages of alkali-activated materials in CaO-SiO2-Al2O3 systems: The management of reaction products and designing of precursors. Mater. Des. 194. DOI: 10.1016/j.matdes.2020.108975.
- Ozgen, S., Adiguzel, O. (2004). Investigation of the thermoelastic phase transformation in a NiAl alloy by molecular dynamics simulation. J. Phys. Chem. Solids. 65, 861–865. DOI: 10.1016/j.jpcs.2003.09.004.
- Pawełek, A. (1989). On the Dislocation-Dynamic Theory of the Portevin-Le Châtelier Effect, Z. Metallkunde, IJMR. 80, 614–618. DOI: 10.1515/ijmr-1989-800902.
- Pawełek, A. (2006). Dyslokacyjne aspekty emisji akustycznej w procesach odkształcenia plastycznego metali. Polska Akademia Nauk, Instytut Metalurgii Inżynierii Materiałowej w Krakowie, Wydaw. OREKOP S.C., Kraków (in Polish).
- Eshelby, D. (1962).The distortion and electrification of plates and rods by dislocations, Physica Status Solidi. 2, 1021–1028. DOI: 10.1002/pssb.19620020807.
- Rejmund, F. (1981). Związek emisji akustycznej z ruchem dyslokacji w kryształach. Rozp. Dokt. IPPT PAN (in Polish).
- Pawełek, A., Kuśnierz, J., Bogucka, J., Jasieński, Z., Ranachowski, Z., Ranachowski, P., Rajmund, F., Dębowski, T. (2007). Acoustic emission and the Portevin – Le Châtelier effect in tensile tested Al alloys processed by ARB technique, Arch. Acoust., 32, 4, 955–962.
- Pieczyska, E.A., Tobushi, H., Takeda, K., Stróż, D., Ranachowski, Z., Kulasiński, K., Kúdela, Jr S., Luckner, J. (2012). Martensite transformation bands studied in TiNi shape memory alloy by infrared and acoustic emission techniques, Kovove Mater.–Metallic Mater. 50, 309–318, 2012. DOI: 10.4149/km_2012_5_309.
- Panasiuk, K., Kyziol, L., Dudzik, K. and Hajdukiewicz, G. (2020). “Application of the Acoustic Emission Method and Kolmogorov-Sinai Metric Entropy in Determining the Yield Point in Aluminium Alloy,” Mater., vol. 13, p. 1386, 2020. DOI: 10.3390/ma13061386.
- Botten, R., Wu, X. Hu, D. and Loretto, M.H. (2001). “The significance of acoustic emission during stressing of TiAl-based alloys,” Acta Mater. 49, 1687–1691. DOI: 10.1016/S1359-6454(01)00091-X.
- Lambert, A., Garat, X., Sturel, T., Gourgues, A.F., and Gingell, A. (2000). “Aplication of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel,” Scripta Mater. 43, 161–166. DOI: 10.1016/S1359-6462(00)00386-9.