Have a personal or library account? Click to login
Impact of Structure Parameters on the Critical Performance of a Novel Calciner—A DEM-Based Study Cover

Impact of Structure Parameters on the Critical Performance of a Novel Calciner—A DEM-Based Study

Open Access
|Dec 2024

References

  1. Zhao, J., Zhao, Q. & Zhao, Q. (2011). The new generation of vertical shaft calciner technology. John Wiley & Sons, Ltd. DOI: 10.1002/9781118061992.ch157.
  2. Yang, Y., Gong, S., Ning, Q., Zhou, X. & Zhao, H. (2018). Development and application of electrocalciners with increased calcination temperature. In Light Metals, 1363–1371. DOI: 10.1007/978-3-319-72284-9_178.
  3. Qi, L., Zhao, Z., Wang, R., Gao, W., Li, J. & Zhang, Y. (2020). Simultaneous Desulfurization and Denitrification Using La–Ce–V–Cu–ZSM-5 Catalysts in an Electrostatic Precipitator. ACS Omega. DOI: 10.1021/acsomega.0c00808.
  4. Sinyavskii, D.P. & Gopkalo, A.P. (1979). Thermal fatigue of chromium-molybdenum steels used in sintering machine and roasting furnace components. Strength of Materials, 11(11), 1202–1205. DOI: 10.1007/bf00767041.
  5. Lu, S., Zhang, P., Qin, C., Wang, X., Luo, F. & Zhou, J. (2006). The analysis on causes of rupture of a HP-NB high temperature alloy radiant furnace tube. In ASME Pressure Vessels and Piping Conference, 321–326. DOI: 10.1115/PVP2006-ICPVT-11-93008.
  6. Ning, X.J., Cheng, S.S. & Xie, N.Q. (2009). Analysis of temperature, stress, and displacement distributions of staves for a blast furnace. Internat. J. Minerals, Metal. Mater. 16(5), 512–516. DOI: 10.1016/S1674-4799(09)60089-3.
  7. Wang, H., Chen, Y., Xie, K., Wang, D. & Zhou, J., (2009). Strength and fatigue fracture analysis of the hydro--damper of a rotary kiln. J. Mech. Strength, 31(6), 992–998. DOI: 10.1061/41039(345)45.
  8. Wen-Xi, D. & Ke-Zhong, S.(2006). Analysis of roasting furnace fracture and invalidation. Inner Mongolia Petrochemical Industry.
  9. Hasan, A.M., Guo, S.M. & Wahab, M.A. (2009). Analysis of fracture in high-temperature vacuum tube furnace. J. Failure Anal. Prev. 9, 262–269. DOI: 10.1007/s11668-009-9236-z.
  10. Rao, M.A., Babu, R.S. & Kumar, M.P. (2017). Failure investigation of a cooling coil tube in zinc roaster furnace. Engin. Failure Anal. 77, 118–125. DOI: 10.1016/j.engfailanal.2017.01.004.
  11. Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V. & Fernandes-Machado, N.R. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts. Mat. Character. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005.
  12. Helwani, Z., Ramli, M., Saputra, E., Putra, Y.L., Simbolon, D.F., Othman, M.R. & Idroes, R. (2020). Composite catalyst of palm mill fly ash-supported calcium oxide obtained from eggshells for transesterification of off-grade palm oil. Catalysts, 10(7), 724. DOI: 10.3390/catal10070724.
  13. Sudah, O.S., Chester, A.W., Kowalski, J.A., Beeckman, J.W. & Muzzio, F.J. (2002). Quantitative characterization of mixing processes in rotary calciners. Powder Technol. 126(2), 166–173. DOI: 10.1016/S0032-5910(02)00009-8.
  14. Chatterjee, A., Sathe, A.V. & Mukhopadhyay, P.K.. (1983). Flow of materials in rotary kilns used for sponge iron manufacture: part ii. effect of kiln geometry. Metal. Transact. B, 14(3), 383–392. DOI: 10.1007/BF02654357.
  15. Chen, I.Y., Navodia, S., Yohannes, B., Nordeck, L., Machado, B., Ardalani, E. & Cuitiño, A.M. (2021). Flow of a moderately cohesive FCC catalyst in two pilot-scale rotary calciners: Residence time distribution and bed depth measurements with and without dams. Chem. Engin. Sci. 230, 116211. DOI: 10.1016/j.ces.2020.116211.
  16. Pichler, M., Haddadi, B., Jordan, C., Norouzi, H. & Harasek, M. (2021). Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln. J. Anal. Appl. Pyrol. 158, 105171. DOI: 10.1016/j.jaap.2021.105171.
  17. Mikulčić, H., Vujanović, M., Fidaros, D.K., Priesching, P., Minić, I., Tatschl, R. & Stefanović, G. (2012). The application of CFD modelling to support the reduction of CO2 emissions in cement industry. Energy, 45(1), 464–473. DOI: 10.1016/j.energy.2012.04.030.
  18. Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2010). Experimentally validated computations of heat transfer in granular materials in rotary calciners. Powder Technol. 198(1), 6–15. DOI: 10.1016/j.powtec.2009.09.024.
  19. Tom assone, M.S., Chaudhuri, B. & Muzzio, F.J. Heat Transfer in Granular Flow in Rotary Calciners: Experiments and Particle Dynamics Simulations.
  20. Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2011). Experimentally validated numerical modeling of heat transfer in granular flow in rotating vessels. Heat Transfer: Mathematical Modelling, Numerical Methods and Information Technology, 271–306.
  21. Santos, D.A., Barrozo, M.A., Duarte, C.R., Weigler, F. & Mellmann, J. (2016). Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM. Advanced Powder Technol. 27(2), 692–703. DOI: 10.1016/j.apt.2016.02.027.
  22. Iroba, K.L., Mellmann, J., Weigler, F., Metzger, T. & Tsotsas, E. (2011). Particle velocity profiles and residence time distribution in mixed-flow grain dryers. Granular Matter. 13, 159–168. DOI: 10.1007/s10035-010-0222-7.
  23. Machado, M.V., Nascimento, S.M., Duarte, C.R. & Barrozo, M.A. (2017). Boundary conditions effects on the particle dynamic flow in a rotary drum with a single flight. Powder Technol., 311, 341–349. DOI: 10.1016/j.powtec.2017.01.076.
  24. Liu, J., Sysyn, M., Liu, Z., Kou, L., Wang, P. (2022).Studyin g the Strengthening Effect of Railway Ballast in the Direct Shear Test due to Insertion of Middle-size Ballast Particles. J. Appl. Comput. Mech. 1-11. DOI: 10.22055/jacm.2022.40206.3537.
  25. Mahdavy, S., Norouzi, H.R., Jordan, C., Haddadi, B. & Harasek, M. (2022). Residence Time Distribution of Non-Spherical Particles in a Continuous Rotary Drum. Processes, 10(6), 1069. DOI: 10.3390/pr10061069.
  26. Liu, X. Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
  27. Schlünder, E.U. (1984). Heat transfer to packed and stirred beds from the surface of immersed bodies. Chem. Engin. & Proces. Proces. Intensific. 18(1), 31–53.
  28. Keey, R.B. (1991). Drying of loose and particulate materials. CRC Press.
  29. Wu, Guorong, Zhanfei, Zuo, and Yanggui, Li. (2023). “Selection of relative DEM time step for modelling fast fluidized bed of A-Type FCC particles.” Symmetry 15.2, 488.
  30. Wu, Guorong, Yanggui, Li, and Muhammad, Israr. (2023). “Improvement of relative DEM time step range in fast fluidization simulation of Type-A FCC particles.” Processes 11.4, 1155.
  31. Liu, X. & Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
  32. Zhang, J.J., Yang, D.C. & Li, J.R. (2011). Discussion on blade design of continuous plate dryer. Chem. Engin. (China), 39(3), 2. DOI: 10.3969/j.issn.1005-9954.2011.03.004.
Language: English
Page range: 25 - 33
Published on: Dec 31, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Tiezhuang Zhou, Fagen Zhang, Run Xu, Yan Gao, Genghua Xie, Kai Xiao, Bin Yang, Wenchun Jiang, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.