References
- Zhao, J., Zhao, Q. & Zhao, Q. (2011). The new generation of vertical shaft calciner technology. John Wiley & Sons, Ltd. DOI: 10.1002/9781118061992.ch157.
- Yang, Y., Gong, S., Ning, Q., Zhou, X. & Zhao, H. (2018). Development and application of electrocalciners with increased calcination temperature. In Light Metals, 1363–1371. DOI: 10.1007/978-3-319-72284-9_178.
- Qi, L., Zhao, Z., Wang, R., Gao, W., Li, J. & Zhang, Y. (2020). Simultaneous Desulfurization and Denitrification Using La–Ce–V–Cu–ZSM-5 Catalysts in an Electrostatic Precipitator. ACS Omega. DOI: 10.1021/acsomega.0c00808.
- Sinyavskii, D.P. & Gopkalo, A.P. (1979). Thermal fatigue of chromium-molybdenum steels used in sintering machine and roasting furnace components. Strength of Materials, 11(11), 1202–1205. DOI: 10.1007/bf00767041.
- Lu, S., Zhang, P., Qin, C., Wang, X., Luo, F. & Zhou, J. (2006). The analysis on causes of rupture of a HP-NB high temperature alloy radiant furnace tube. In ASME Pressure Vessels and Piping Conference, 321–326. DOI: 10.1115/PVP2006-ICPVT-11-93008.
- Ning, X.J., Cheng, S.S. & Xie, N.Q. (2009). Analysis of temperature, stress, and displacement distributions of staves for a blast furnace. Internat. J. Minerals, Metal. Mater. 16(5), 512–516. DOI: 10.1016/S1674-4799(09)60089-3.
- Wang, H., Chen, Y., Xie, K., Wang, D. & Zhou, J., (2009). Strength and fatigue fracture analysis of the hydro--damper of a rotary kiln. J. Mech. Strength, 31(6), 992–998. DOI: 10.1061/41039(345)45.
- Wen-Xi, D. & Ke-Zhong, S.(2006). Analysis of roasting furnace fracture and invalidation. Inner Mongolia Petrochemical Industry.
- Hasan, A.M., Guo, S.M. & Wahab, M.A. (2009). Analysis of fracture in high-temperature vacuum tube furnace. J. Failure Anal. Prev. 9, 262–269. DOI: 10.1007/s11668-009-9236-z.
- Rao, M.A., Babu, R.S. & Kumar, M.P. (2017). Failure investigation of a cooling coil tube in zinc roaster furnace. Engin. Failure Anal. 77, 118–125. DOI: 10.1016/j.engfailanal.2017.01.004.
- Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V. & Fernandes-Machado, N.R. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts. Mat. Character. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005.
- Helwani, Z., Ramli, M., Saputra, E., Putra, Y.L., Simbolon, D.F., Othman, M.R. & Idroes, R. (2020). Composite catalyst of palm mill fly ash-supported calcium oxide obtained from eggshells for transesterification of off-grade palm oil. Catalysts, 10(7), 724. DOI: 10.3390/catal10070724.
- Sudah, O.S., Chester, A.W., Kowalski, J.A., Beeckman, J.W. & Muzzio, F.J. (2002). Quantitative characterization of mixing processes in rotary calciners. Powder Technol. 126(2), 166–173. DOI: 10.1016/S0032-5910(02)00009-8.
- Chatterjee, A., Sathe, A.V. & Mukhopadhyay, P.K.. (1983). Flow of materials in rotary kilns used for sponge iron manufacture: part ii. effect of kiln geometry. Metal. Transact. B, 14(3), 383–392. DOI: 10.1007/BF02654357.
- Chen, I.Y., Navodia, S., Yohannes, B., Nordeck, L., Machado, B., Ardalani, E. & Cuitiño, A.M. (2021). Flow of a moderately cohesive FCC catalyst in two pilot-scale rotary calciners: Residence time distribution and bed depth measurements with and without dams. Chem. Engin. Sci. 230, 116211. DOI: 10.1016/j.ces.2020.116211.
- Pichler, M., Haddadi, B., Jordan, C., Norouzi, H. & Harasek, M. (2021). Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln. J. Anal. Appl. Pyrol. 158, 105171. DOI: 10.1016/j.jaap.2021.105171.
- Mikulčić, H., Vujanović, M., Fidaros, D.K., Priesching, P., Minić, I., Tatschl, R. & Stefanović, G. (2012). The application of CFD modelling to support the reduction of CO2 emissions in cement industry. Energy, 45(1), 464–473. DOI: 10.1016/j.energy.2012.04.030.
- Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2010). Experimentally validated computations of heat transfer in granular materials in rotary calciners. Powder Technol. 198(1), 6–15. DOI: 10.1016/j.powtec.2009.09.024.
- Tom assone, M.S., Chaudhuri, B. & Muzzio, F.J. Heat Transfer in Granular Flow in Rotary Calciners: Experiments and Particle Dynamics Simulations.
- Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2011). Experimentally validated numerical modeling of heat transfer in granular flow in rotating vessels. Heat Transfer: Mathematical Modelling, Numerical Methods and Information Technology, 271–306.
- Santos, D.A., Barrozo, M.A., Duarte, C.R., Weigler, F. & Mellmann, J. (2016). Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM. Advanced Powder Technol. 27(2), 692–703. DOI: 10.1016/j.apt.2016.02.027.
- Iroba, K.L., Mellmann, J., Weigler, F., Metzger, T. & Tsotsas, E. (2011). Particle velocity profiles and residence time distribution in mixed-flow grain dryers. Granular Matter. 13, 159–168. DOI: 10.1007/s10035-010-0222-7.
- Machado, M.V., Nascimento, S.M., Duarte, C.R. & Barrozo, M.A. (2017). Boundary conditions effects on the particle dynamic flow in a rotary drum with a single flight. Powder Technol., 311, 341–349. DOI: 10.1016/j.powtec.2017.01.076.
- Liu, J., Sysyn, M., Liu, Z., Kou, L., Wang, P. (2022).Studyin g the Strengthening Effect of Railway Ballast in the Direct Shear Test due to Insertion of Middle-size Ballast Particles. J. Appl. Comput. Mech. 1-11. DOI: 10.22055/jacm.2022.40206.3537.
- Mahdavy, S., Norouzi, H.R., Jordan, C., Haddadi, B. & Harasek, M. (2022). Residence Time Distribution of Non-Spherical Particles in a Continuous Rotary Drum. Processes, 10(6), 1069. DOI: 10.3390/pr10061069.
- Liu, X. Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
- Schlünder, E.U. (1984). Heat transfer to packed and stirred beds from the surface of immersed bodies. Chem. Engin. & Proces. Proces. Intensific. 18(1), 31–53.
- Keey, R.B. (1991). Drying of loose and particulate materials. CRC Press.
- Wu, Guorong, Zhanfei, Zuo, and Yanggui, Li. (2023). “Selection of relative DEM time step for modelling fast fluidized bed of A-Type FCC particles.” Symmetry 15.2, 488.
- Wu, Guorong, Yanggui, Li, and Muhammad, Israr. (2023). “Improvement of relative DEM time step range in fast fluidization simulation of Type-A FCC particles.” Processes 11.4, 1155.
- Liu, X. & Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
- Zhang, J.J., Yang, D.C. & Li, J.R. (2011). Discussion on blade design of continuous plate dryer. Chem. Engin. (China), 39(3), 2. DOI: 10.3969/j.issn.1005-9954.2011.03.004.