Have a personal or library account? Click to login
Effect of metal addition of Cu, Ni, and Fe on swelling Zeolit Alam Lampung (ZAL) to present amphoteric features on Cu-Ni-Fe/ZAL swelling Cover

Effect of metal addition of Cu, Ni, and Fe on swelling Zeolit Alam Lampung (ZAL) to present amphoteric features on Cu-Ni-Fe/ZAL swelling

Open Access
|Dec 2024

References

  1. Minceva, M., Fajgar, R., Markovska, L., Meshko, V. (2008). Comparative Study of Zn2+, Cd2+, and Pb2+ Removal From Water Solution Using Natural Clinoptilolitic Zeolite and Commercial Granulated Activated Carbon. Equilibrium of Adsorption. Separ. Sci. Technol. Pap. 43(8), 2117–43. DOI: 10.1080/01496390801941174.
  2. Król, M. (2020). Natural vs. Synthetic Zeolites. Crystals. DOI: 10.3390/cryst10070622.
  3. Muzwar, K., Hidajat, W., Winarno, T. (2018). Genesis dan Karakteristik Endapan Zeolit Desa Hargomulyo dan Sekitarnya, Kecamatan Gedangsari, Gunung Kidul, Daerah Istimewa Yogyakarta. J. Geosains Dan Teknologi. Pap. 1, 19. DOI: 10.14710/jgt.1.1.2018.19-24.
  4. Razzak, M., Las, T., Priyambodo, P. (2013). The Characterization of Indonesian’s Natural Zeolite For Water Filtration System. J. Kimia VALENSI. Pap. 3. DOI: 10.15408/jkv.v3i2.518.
  5. Syafriadi., Marhamah, S., Al Muttaqii, M. (2021). PENGARUH VARIASI KONSENTRASI NaOH PADA ZEOLIT ALAM LAMPUNG TERHADAP PRODUK SILIKA. J. Riset Teknologi Ind. Pap. 15, 393–402.
  6. Khivantsev, K., Gramatikov, S., Jaegers, N., Derewinski, M., Vayssilov, G., Szanyi, J., Aleksandrov, H. (2022). Direct observation of a new aluminum Lewis acid site in a zeolite.
  7. Johnson, B., Iorio, J., Roman-Leshkov, Y. (2021). Identification and quantification of distinct active sites in Hf-Beta zeolites for transfer hydrogenation catalysis. J. Catalysis. Pap. 404. DOI: 10.1016/j.jcat.2021.10.026.
  8. Ates, A. (2019). The modification of aluminium content of natural zeolites with different composition. Powder Technol. Pap. 344. DOI: 10.1016/j.powtec.2018.12.018.
  9. Lusardi, M., Davis, M. (2019). Investigation of the active Bronsted acid site for the DME carbonylation reaction in chabazite-type zeolites.
  10. Kong, H.-Y., Chen, H.-D., Yu, R., Zhang, W.-P. (2021). A Combination of DFT and Solid-state NMR Study on the Relationship between Framework Al Distribution and Bronsted Acidity in SSZ-39 Zeolite. J. Molec. Catal. Pap. 35, 215–25. DOI: 10.16084/j.issn1001-3555.2021.03.002.
  11. Zhang, L., Ma, X., Zheng, J., Liu, Y., Qin, B., Du, Y. (2022). Active Zn Species Nest in Dealumination Zeolite Composite for Propane Dehydrogenation. Catal. Letters. DOI: 10.1007/s10562-022-04244-4.
  12. Sasongko, S., Anggoro, D.D., Buchori, L., Febrianto, R., Siagian, E. (2020). The effect of dealumination process on zeolite Y acidity and morphology. vol. 2197.
  13. Wang, S., He, Y., Jiao, W., Wang, J., Fan, W. (2019). Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework. Current Opinion Chem. Engin. DOI: 10.1016/j.coche.2019.04.002.
  14. Palčić, A., Valtchev, V. (2020). Analysis and control of acid sites in zeolites. Appl. Catal. A: General. DOI: 10.1016/j.apcata.2020.117795.
  15. Boronat, M., Corma, A. (2015). Factors Controlling the Acidity of Zeolites. Catal. Letters. Pap. 145(1), 162–72. DOI: 10.1007/s10562-014-1438-7.
  16. Mondal, P., Hazarika, K.K., Deka, A., Deka, R.C. (2008). Density functional studies on Lewis acidity of alkaline earth metal exchanged faujasite zeolite. Molec. Simulation. Pap. 34(10–15), 1121–8. DOI: 10.1080/08927020802073032.
  17. Huang, M., Kaliaguine, S. (1992). Lewis acid and Lewis basic Sites in Alkali-exchanged Zeolites - characterization and catalytic activity. In: Smith, K.J., Sanford, E.C.B.T.-S. in S.S. and C., editors. Progress in Catalysis, vol. 73. Elsevier p. 291–300.
  18. Chalupka, K., Sadek, R., Valentin, L., Millot, Y., Calers, C., Nowosielska, M., Rynkowski, J., Dzwigaj, S. (2018). Dealuminated Beta Zeolite Modified by Alkaline Earth Metals. J. Chem. Pap. 2018, 7071524. DOI: 10.1155/2018/7071524.
  19. Li, X., Dong, W., Zhang, J., Shao, S., Cai, Y. (2020). Preparation of bio-oil derived from catalytic upgrading of biomass vacuum pyrolysis vapor over metal-loaded HZSM-5 zeolites. J. Energy Instit. Pap. 93(2). DOI: 10.1016/j.joei.2019.06.005.
  20. Zhang, R., Zou, R., Li, W., Chang, Y., Fan, X. (2022). On understanding the sequential post-synthetic microwave--assisted dealumination and alkaline treatment of Y zeolite. Microp. Mesop. Mater. Pap. 333, 111736. DOI: 10.1016/j.micro-meso.2022.111736.
  21. Yang, F., Fu, J., Mo, J., Xiuyang, L. (2013). Synergy of Lewis and Brønsted Acids on Catalytic Hydrothermal Decomposition of Hexose to Levulinic Acid. Energy & Fuels. Pap. 27, 6973–6978. DOI: 10.1021/ef401560v.
  22. Songtawee, S., Rungtaweevoranit, B., Klaysom, C., Faungnawakij, K. (2021). Tuning Brønsted and Lewis acidity on phosphated titanium dioxides for efficient conversion of glucose to 5-hydroxymethylfurfural. RSC Advances. Pap. 11(47), 29196–206. DOI: 10.1039/D1RA06002C.
  23. Vosmerikova, L.N., Matieva, Z.M., Snatenkova, Y.M., Kolesnichenko, N.V., Zaikovskii, V.I., Vosmerikov, A.V. (2022). Conversion of dimethyl ether to liquid hydrocarbons over Zn--isomorphously substituted HZSM-5. Fuel. Pap. 320, 123959. DOI: 10.1016/J.FUEL.2022.123959.
  24. Liu, M., Jia, S., Li, C., Zhang, A., Song, C., Guo, X. (2014). Facile preparation of Sn-β zeolites by post-synthesis (isomorphous substitution) method for isomerization of glucose to fructose. Chin. J. Catal. Pap. 35(5), 723–32. DOI: 10.1016/S1872-2067(14)60071-1.
  25. Yue, Q., Zhang, J., Shamzhy, M., Opanasenko, M. (2019). Seeded growth of isomorphously substituted chabazites in proton-form. Microp. Mesop. Mater. Pap. 280, 331–6. DOI: 10.1016/J.MICROMESO.2019.02.017.
  26. Gackowski, M., Datka, J. (2020). Acid properties of hierarchical zeolites Y. Molecules. DOI: 10.3390/molecules25051044.
  27. Zheng, Y., Li, D., Wang, J., Lyu, B., Long, B., Ding, Z., Zheng, Z. (2021). Production of bio-aromatic by catalytic biomass pyrolysis over metal modified biomass-derived biochar--based catalyst. Nongye Gongcheng Xuebao/Transactions of the Chinese Soc. Agric. Engin. Pap. 37(5), 231–40. DOI: 10.11975/j.issn.1002-6819.2021.05.027.
  28. Darmansyah, D., Ginting, S., Iryani, D., Sari, R., Supriyadi, D. (2021). Characterization of Modified Lampung Natural Zeolite with Cetyl Trimethyl Ammonium Bromide (CTAB) for Adsorption Industrial Tapioca Wastewater.
  29. Ginting, S., Yulia, Y., Wardono, H., Darmansyah, D., Hanif, M., Iryani, D. (2019). Synthesis and Characterization of Zeolite Lynde Type A (LTA): Effect of Aging Time. J. Physics: Conf. Series. Pap. 1376, 12041. DOI: 10.1088/1742-6596/1376/1/012041.
  30. Sáez Del Bosque, I.F., Martínez-Ramírez, S., Blanco--Varela, M.T. (2014). FTIR study of the effect of temperature and nanosilica on the nano structure of C–S–H gel formed by hydrating tricalcium silicate. Constr. Building Mater. Pap. 52, 314–23. DOI: 10.1016/J.CONBUILDMAT.2013.10.056.
  31. Xu, S., Wang, Q., Wang, N., Song, Q., Li, Y. (2022). Effects of natural zeolite replacement on the properties of superhydrophobic mortar. Constr. Building Mater. Pap. 348, 128567. DOI: 10.1016/J.CONBUILDMAT.2022.128567.
  32. Al-Oweini, R., El-Rassy, H. (2009). Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Molec. Struct. Pap. 919(1–3), 140–5. DOI: 10.1016/J.MOLSTRUC.2008.08.025.
  33. Król, M., Jeleń, P. (2021). The Effect of Heat Treatment on the Structure of Zeolite A. Mater. Pap. 14, 4642. DOI: 10.3390/ma14164642.
  34. Ellerbrock, R., Stein, M., Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Reports. Pap. 12(1), 11708. DOI: 10.1038/s41598-022-15882-4.
  35. Ke, G., Shen, H., Yang, P. (2019). Synthesis of X-Zeolite from Waste Basalt Powder and its Influencing Factors and Synthesis Mechanism. Materials. DOI: 10.3390/ma12233895.
  36. Elaiopoulos, K., Perraki, T., Grigoropoulou, E. (2010). Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Microp. Mesop. Mater. Pap. 134(1–3), 29–43. DOI: 10.1016/J.MICROMESO.2010.05.004.
  37. Ünveren, E., Gündüz, G., Cakicioğlu–Özkan, F. (2005). Isomerization of Alpha-pinene Over Acid Treated Natural Zeolite. Chem. Engin. Commun. Pap. 192(3), 386–404. DOI: 10.1080/00986440590477773.
  38. Ates, A., Hardacre, C. (2012). The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. J. Colloid Interf. Sci. Pap. 372(1), 130–40. DOI: 10.1016/J.JCIS.2012.01.017.
  39. Beyer, H. (2002). Dealumination Techniques for Zeolites. Mol. Sieves, Pap. 3, 203–55.
  40. Wang, C., Leng, S., Guo, H., Yu, J., Li, W., Cao, L., Huang, J. (2019). Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment. Appl. Surf. Sci. Pap. 498, 143874. DOI: 10.1016/J.APSUSC.2019.143874.
  41. Burris, L.E., Juenger, M.C.G. (2016). The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials. Cement Conc. Res. Pap. 79, 185–93. DOI: 10.1016/J.CEMCONRES.2015.08.007.
  42. Tang, G., Li, Y., Wang, Y., Chai, Y., Liu, C. (2022). A review on the synthesis, structural modification and application of two-dimensional MFI zeolite. J. Porous Mater. Pap. 29(6), 1649–66. DOI: 10.1007/s10934-022-01304-3.
  43. Bruckner, R., Harmata, M. (2010). Substitution Reactions on Aromatic Compounds BT - Organic Mechanisms: Reactions, Stereochemistry and Synthesis. Berlin, Heidelberg: Springer Berlin Heidelberg p. 201–57.
  44. O’Neill, M.E., Wade, K. (1982). 1 - Structural and Bonding Relationships among Main Group Organometallic Compounds. In: Wilkinson, G., Stone, F.G.A., Abel, E.W.B.T.-C.O.C., editors. Oxford: Pergamon p. 1–42.
  45. Chen, R., Li, L. (2001). Reactions of atomic transition--metal ions with long-chain alkanes. J. Amer. Soc. Mass Spec-trom. Pap. 12(4), 367–75. DOI: 10.1016/S1044-0305(01)00217-3.
  46. Armentrout, P.B., Beauchamp, J.L. (1989). The chemistry of atomic transition-metal ions: insight into fundamental aspects of organometallic chemistry. Accounts of Chemical Research. Pap. 22(9), 315–21. DOI: 10.1021/ar00165a004.
  47. Jørgensen, K.A. (1991). A Review of: “Bonding Energetics in Organometallic Compounds. Edited by Tobin J. Marks. ACS Symposium Series No. 428, American Chemical Society, Washington, DC, 1990, xi + 305pp., $ 64.95. ISBN 0-8412-1791-2.” Sulfur Reports. Pap. 11(1) 201–2. DOI: 10.1080/01961779108048769.
  48. Shui, H., Xu, H., Zhou, Y., Shui, T., Pan, C., Wang, Z. (2017). Study on hydro-liquefaction kinetics of thermal dissolution soluble fraction from Shenfu sub-bituminous coal. Fuel. Pap. 200, 576–82. DOI: 10.1016/J.FUEL.2017.03.048.
  49. Yoshioka, T., Iyoki, K., Hotta, Y., Kamimura, Y., Yamada, H., Han, Q. (2023). Dealumination of small-pore zeolites through pore-opening migration process with the aid of pore-filler stabilization. Sci. Adv. Pap. 8(25) eabo3093. DOI: 10.1126/sciadv.abo3093.
  50. Shiraishi, S. (2003). Electric Double Layer Capacitors. Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology. Pap. 447–57. DOI: 10.1016/B978-008044163-4/50027-9.
  51. Leong, J., Seo, Y., Chu, S.-H., Park, C., Jeon, E.J., Cho, S.-W. (2018). Pore Diameter of Mesoporous Silica Modulates Oxidation of H2O2-Sensing Chromophore in a Porous Matrix. Langmuir. Pap. 34(38), 11242–11252. DOI: 10.1021/acs.langmuir.8b00957.
  52. Al-Ghouti, M.A., Da’ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. Pap. 393, 122383. DOI: 10.1016/J.JHAZMAT.2020.122383.
  53. Musyoka, N.M., Petrik, L.F., Hums, E., Kuhnt, A., Schwieger, W. (2015). Thermal stability studies of zeolites A and X synthesized from South African coal fly ash. Res. Chem. Intermed. Pap. 41(2), 575–82. DOI: 10.1007/s11164-013-1211-3.
  54. Usachev, N., Belanova, E., Krukovsky, I., Kanaev, S., Atal”yan, O., Kazakov, A. (2003). Thermal transformations in systems based on zeolites Y, X, and A containing zinc and sodium nitrates. Russian Chemical Bulletin - RUSS CHEM BULL. Pap. 52, 1940–9. DOI: 10.1023/B:RUCB.0000009636.89718.56.
  55. Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. J. Phys. Chem. Solids. Pap. 67(9–10), 1973–94. DOI: 10.1016/J.JPCS.2006.05.057.
  56. Fermoso, J., Hernando, H., Jana, P., Moreno, I., Přech, J., Ochoa-Hernández, C. (2016). Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catal. Today. Pap. 277, 171–81. DOI: 10.1016/j.cattod.2015.12.009.
  57. Chen, H., Wang, M., Yang, M., Shang, W., Yang, C., Liu, B., Hao, Q., Zhang, J., Ma, X. (2019). Organosilane surfactant--directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance. J. Mater. Sci. Pap. 54. DOI: 10.1007/s10853-019-03485-w.
  58. Ma, T., Imai, H., Yamawaki, M., Terasaka, K., Li, X. (2014). Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide. Catal. Pap. 4, 116–28. DOI: 10.3390/catal4020116.
  59. Dugkhuntod, P., Imyen, T., Wannapakdee, W., Yutthalekha, T., Salakhum, S., Wattanakit, C. (2019). Synthesis of hierarchical ZSM-12 nanolayers for levulinic acid esterification with ethanol to ethyl levulinate. RSC Advances. Pap. 9, 18087–97. DOI: 10.1039/C9RA03213D.
  60. Damjanović, L., Auroux, A. (2009). Determination of Acid/Base Properties by Temperature Programmed Desorption (TPD) and Adsorption Calorimetry BT – Zeolite Characterization and Catalysis: A Tutorial. In: Chester, A.W., Derouane, E.G., editors. Dordrecht: Springer Netherlands Pap. 107–67.
  61. Lilic, A., Wei, T., Bennici, S., Devaux, J.-F., Dubois, J.-L., Auroux, A. (2017). A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production. ChemSusChem. Pap. 10. DOI: 10.1002/cssc.201701040.
Language: English
Page range: 8 - 16
Published on: Dec 31, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Prahady Susmanto, Ambo Intang, Muhammad Djoni Bustan, Sri Haryati, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.