Have a personal or library account? Click to login
Green preparation of argentum tungstate and characterization as nanorod with catalytic evaluation for synthesizing tetracyclic xanthenes and validation as anti-TB Cover

Green preparation of argentum tungstate and characterization as nanorod with catalytic evaluation for synthesizing tetracyclic xanthenes and validation as anti-TB

Open Access
|Dec 2024

References

  1. Araujo, R.O., Santos, V.O., Ribeiro, F.C., Chaar, J.D.S., Falcão, N.P. & de Souza, L.K. (2021). One-step synthesis of a heterogeneous catalyst by the hydrothermal carbonization of acai seed. Reac. Kinet. Mech. Cat. 134, 199–220. DOI: 10.1007/s11144-021-02059-9.
  2. Yan, H., Ren, Y., Zhang, R., Chang, F., Wei, Q. & Xu, J. (2023). A One-Pot Hydrothermal Preparation of High Loading Ni/La2O3 Catalyst for Efficient Hydrogenation of Cinnamalde-hyde. Catalysts 13(2), 298. DOI: 10.3390/catal13020298.
  3. Wang, X., Fu, C., Wang, P., Yu, H. & Yu, J. (2013). Hierarchically porous metastable β-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity. Nano-technology 24, 165602. DOI: 10.1088/0957-4484/24/16/165602.
  4. Roca, R.A., Lemos, P.S., Gracia, L., Andrés, J. & Longo, E. (2017). Uncovering the metastable γ-Ag2WO4 phase: a joint experimental and theoretical study. RSC Adv. 7, 5610–5620. DOI: 10.1039/C6RA24692C.
  5. Wu, G., Liu, Q., Wang, J., Cai, Z., Li, H., Zhang, T., Lu, R., Li, P., Han, J. & Xing, W. (2021). Synthesis of silver-based composite photocatalysis material and its visible-light-driven photocatalytic degradation of dye pollutants. Fresenius Environ. Bull. 30, 9696–9706.
  6. Al-Wasidi, A.S. & Abdelrahman, E.A. (2023). Significant photocatalytic decomposition of malachite green dye in aqueous solutions utilizing facilely synthesized barium titanate nanoparticles. Discover Nano. 18, 97. DOI: 10.1186/s11671-023-03873-x.
  7. Al-Wasidi, A.S., Naglah, A.M., Saad, F.A. & Abdelrahman, E.A. (2022). Modification of silica nanoparticles with 1-hydroxy-2-acetonaphthone as a novel composite for the efficient removal of Ni(II), Cu(II), Zn(II), and Hg(II) ions from aqueous media. Arab. J. Chem. 15, 104010. DOI: 10.1016/j.arabjc.2022.104010.
  8. Al-Wasidi, A.S., Saad, F.A., Munshi, A.M. & Abdelrahman, E.A. (2023). Facile synthesis and characterization of magnesium and manganese mixed oxides for the efficient removal of tartrazine dye from aqueous media. RSC Adv. 13, 5656–5666. DOI: 10.1039/D3RA00143A.
  9. Assis, M.D., Castro, M.S., Aldao, C.M., Buono, C., Ortega, P.P., Teodoro, M.D., Andres, J., Gouveia, A.F., Simões, A.Z., Longo, E. & Macchi, C.E. (2023). Disclosing the nature of vacancy defects in α-Ag2WO4. Mater. Res. Bull. 164, 112252. DOI: 10.1016/j.materresbull.2023.112252.
  10. Jia, X., Xu, G., Du, Z. & Fu, Y. (2018). Cu(BTC)-MOF catalyzed multicomponent reaction to construct 1,4-disubstituted-1,2,3-triazoles. Polyhedron 151, 515–519. DOI: 10.1016/j.poly.2018.05.058.
  11. Zelefack, F., Guilet, D., Fabre, N., Bayet, C., Chevalley, S., Ngouela, S., Lenta, B.N., Valentin, A., Tsamo, E. & Dijoux-Franca, M.G. (2009). Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod. 72, 954–957. DOI: 10.1021/np8005953.
  12. Manathanath, M., Sasidharan, S., Saudagar, P., Panicker, U.G. & Sujatha, S. (2022). Photodynamic evaluation of triazine appended porphyrins as anti-leishmanial and anti-tumor agents. Polyhedron 217, 115711. DOI: 10.1016/j.poly.2022.115711.
  13. Evangelinou, O., Hatzidimitriou, A.G., Velali, E., Pantazaki, A.A., Voulgarakis, N. & Aslanidis, P. (2014). Mixed-ligand copper (I) halide complexes bearing 4, 5-bis (diphenylphosphano)-9, 9-dimethyl-xanthene and N-methylbenzothiazole-2-thione: Synthesis, structures, luminescence and antibacterial activity mediated by DNA and membrane damage. Polyhedron 72, 122–129. DOI: 10.1016/j.poly.2014.02.002.
  14. Zolfigol, M.A., Moosavi-Zare, A.R., Arghavani-Hadi, P., Zare, A., Khakyzadeh, V. & Darvishi, G. (2012). WCl6 as an efficient, heterogeneous and reusable catalyst for the preparation of 14-aryl-14 H-dibenzo[a, j]xanthenes with high TOF. RSC Adv. 2, 3618–3620. DOI: 10.1039/C2RA00014H.
  15. Liu, J., Diwu, Z. & Leung, W.Y. (2001). Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg. Med. Chem. Lett. 11, 2903–2905. DOI: 10.1016/S0960-894X(01)00595-9.
  16. Ahmad, M., King, T.A., Ko, D.K., Cha, B.H. & Lee, J. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D: Appl. Phys. 35, 1473. DOI: 10.1088/0022-3727/35/13/303.
  17. Adjadi, S., Akbari, M., Kahangi, F.G. & Heravi, M.M. (2020). Acidic polymer containing sulfunic acid and carboxylic acid groups heterogenized with natural clay: A novel metal free and heterogeneous catalyst for acid-catalyzed reactions. Polyhedron 179, 114375. DOI: 10.1016/j.poly.2020.114375.
  18. Chen, X., Pradhan, T., Wang, F., Kim, J.S. & Yoon, J. (2012). Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 112, 1910–1956. DOI: 10.1021/cr200201z.
  19. World Health Organization, Geneva, 2019. Global tuberculosis report 2019. (https://www.who.int/publications/i/item/9789241565714) (accessed 1 March 2024).
  20. Vilcheze, C. & Jr, W.R.J. (2019). The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. J. Mol. Biol. 431, 3450–3461. DOI: 10.1016/j.jmb.2019.02.016.
  21. Kai, G., Hualan, W., Shuxin, W., Ying, W. & Jinghua, C. (2015). Efficient synthesis of 1,8-dioxo-octahydroxanthenes catalyzed by β-cyclodextrin grafted with butyl sulfonic acid in aqueous media. Chin. J. Catal. 36, 1249–1255. DOI: 10.1016/S1872-2067(15)60888-9.
  22. Li, J., Lu, L. & Su, W. (2010). A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett. 51, 2434–2437. DOI: 10.1016/j.tetlet.2010.02.149.
  23. George, T., Joseph, S. & Mathew, S. (2005). Synthesis and characterization of nanophased silver tungstate. Pramana 65, 793–799. DOI: 10.1007/BF02704077.
  24. G.E. Said, M. Tarek, A.A. Zen, A.A. Almehizia, A.M. Naglah, T.K. Khatab, Novel Cobalt/vitamin B3 metal-organic framework as nano-catalyst in synthesis of some new bis-indole derivatives with staking validation towards Salmonella DNA. J. Organometallic Chemistry 1008 (2024) 123074. DOI: 10.1016/j.jorganchem.2024.123074.
  25. Abdel-Latif, E., Khatab, T.K., Fekri, A. & Khalifa, M.E. (2021). Synthesis of New Binary Thiazole-Based Heterocycles and Their Molecular Docking Study as COVID-19 Main Pro-tease (Mpro) Inhibitors. Russ. J. Gen. Chem. 91, 1767–1773. DOI: 10.1134/S1070363221090231.
  26. Shaker, N., Kandil, E.M., Osama, Y., Khatab, T.K. & Khalifa, M.E. (2021). ZnCl2/SiO2 as a New Catalyst for the Eco-Friendly Synthesis of N-Thiocarbamoyl Pyrazoles and Thiosemicarbazones with Antioxidant and Molecular Docking Evaluation as (UppS) Inhibitor. Curr. Org. Chem. 25, 2037–2044. DOI: 10.2174/1385272825666210809142341.
  27. Khatab, T.K., Kandil, E.M., Elsefy, D.E. & El-Mekabaty, A. (2021). A One-Pot Multicomponent Catalytic Synthesis of New 1H-Pyrazole-1-Carbothioamide Derivatives with Molecular Docking Studies as COX-2 Inhibitors. Biointerf. Res. Appl. Chem. 11, 13779–13789. DOI: 10.33263/BRIAC116.1377913789.
  28. Khatab, T.K., Mubarak, A.Y. & Soliman, H.A. (2017). Design and Synthesis Pairing Between Xanthene and Tetrazole in Pentacyclic System Using Tetrachlorosilane with Aurora Kinase Inhibitor Validation. J. Heter. Chem. 54, 2463–2470. DOI: 10.1002/jhet.2846.
  29. Khatab, T.K. Hassan, A.S. & Hafez, T.S. (2019). V2O5/SiO2 as an efficient catalyst in the synthesis of 5-amino-pyrazole derivatives under solvent free condition. Bull. Chem. Soc. Ethiop. 33, 135–142. DOI: 10.4314/bcse.v33i1.13.
  30. Soliman, H.A. & Khatab, T.K. (2018). New Approach for Tetrachlorosilane Promoted One-Pot, Condensation Reaction for Tetrahydrobenzo[a]Xanthene-11-Ones with Docking Validation as Aurora Kinase Inhibitor. Silicon 10, 229–233. DOI: 10.1007/s12633-016-9421-0.
  31. Soliman, H.A., Khatab, T.K. & Abdel-Megeid, F.M. (2016). Utilization of bromine azide to access vicinal-azidobromides from arylidene malononitrile. Chin. Chem. Lett. 27, 1515–1518. DOI: 10.1016/j.cclet.2016.03.026.
  32. Said, G.E., Tarek, M., Al-Wasidi, A.S., Naglah, A.M., Almehizia, A.A. & Khatab, T.K. (2024). Niacin based MOF as efficient nano-catalyst in the synthesis of some new benzothiazoles and benzimidazoles as anti-Alzheimer (AChE inhibitors). J. Mol. Struct. 1311, 138462. DOI: 10.1016/j.molstruc.2024.138462.
  33. Almehizia, A.A., Naglah, A.M., Zen, A.A., Khatab, T.K. & Hassan, A.S. (2024). TCS/ZnCl2 as a controlled reagent for the Michael addition and heterocyclic cyclization based on the phenyl pyrazolone scaffold with docking validation as a Covid-19 protease inhibitor. Bull. Chem. Soc. Ethiop. 38, 1119–1127. DOI: 10.4314/bcse.v38i4.24.
  34. Hassan, A.S., Hafez, T.S., Ali, M.M. & Khatab, T.K. (2016). Design, synthesis and cytotoxic activity of some new pyrazolines bearing benzofuran and pyrazole moieties. Res. J. Pharm. Biol. Chem. Sci. 7, 417–429. DOI: http://www.rjpbcs.com/pdf/2016_7(4)/[60].pdf
  35. Javid, A., Heravi, M.M. & Bamoharram, F.F. (2012). One-pot three-component synthesis of β-acetamido carbonyl compounds catalyzed by heteropoly acids. Monatsh. Chem. 143, 831–834. DOI: 10.1007/s00706-011-0669-1.
  36. Gupta, P., Thomas, S.E., Zaidan, S.A., Pasillas, M.A., Cory-Wright, J., Sebastián-Pérez, V., Burgess, A., Cattermole, E., Meghir, C., Abell, C. & Coyne, A.G. (2021). A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of Mycobacterium tuberculosis. Comput Struct Biotechnol J. 19, 3491–3506. DOI: 10.1016/j.csbj.2021.06.006.
Language: English
Page range: 1 - 7
Published on: Dec 31, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Abdulrahman A. Almehizia, Mohamed A. Al-Omar, Ahmed M. Naglah, Hazem A. Ghabbour, Ashraf S. Hassan, Tamer K. Khatab, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.