Have a personal or library account? Click to login
Colorimetric detection of platinum (IV) ions based on triangular silver nanoprism particles in aqueous environmental sample Cover

Colorimetric detection of platinum (IV) ions based on triangular silver nanoprism particles in aqueous environmental sample

Open Access
|Sep 2024

References

  1. Kim, H.N., Ren, W.X., Kim, J.S. & Yoon, J. (2012). Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 41, 3210e3244. DOI: 10.1039/C1CS15245A.
  2. Li, J., Wang, X.X., Zhao, G.X., Chen, C.L., Chai, Z.F., Alsaedi, A., Hayat, T. & Wang, X.K. (2018). Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322e2356. DOI: 10.1039/C7CS00543A.
  3. Amin, N., Siddiqi, H.M., Lin, Y.K., Hussain, Z. & Majeed, N. (2020). Bovine serum albumin protein-based liquid crystal biosensors for optical detection of toxic heavy metals in water. Sensors, 20, 298. DOI: 10.3390/s20010298.
  4. Lin, L., Yao, S., Gao, R., Liang, X., Yu, Q., Deng, Y., Liu, J., Peng, M., Jiang, Z., Li, S., Li, Y-W., Wen, X-D., Zhou, W. & Ma, D. (2019). A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361. DOI: 10.1038/s41565-019-0366-5.
  5. Feng, W., Zengji, Z., Testoff, T.T., Wang, T., Yan, X., Li, X., Liu, D., Lichang Wang, L. & Zhou, X. (2021). Photoinduced charge-separated molecular probe for ultrasensitive spectrum analysis and rapid colorimetric detection of platinum ions. Anal. Chim. Acta, 1153, DOI: 10.1016/j.aca.2021.338278.
  6. Sang, F., Liu, J., Zhang, X. & Pan, J. (2018). An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim. Acta, 185, 267. DOI: 10.1007/s00604-018-2794-6.
  7. Rudolph, E., Hann, S., Stingeder, G. & Reiter, C. (2005). Ultra-trace analysis of platinum in human tissue samples. Anal. Bioanal. Chem. 382, 1500–1506. DOI: 10.1007/s00216-005-33706.
  8. Chen, L., Fu, X., Lu, W. & Chen, L. (2013). Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl. Mater. Interfaces, 5, 284–290. DOI: 10.1021/am3020857.
  9. Brouwers, E.E., Tibben, M.M., Joerger, M., Van, T.O., Rosing, H., Schellens, J.H.M. & Beijnen, J.H. (2005). Determination of oxaliplatin in human plasma and plasma ultrafiltrate by graphite-furnace atomic-absorption spectrometry. Anal. Bio-anal. Chem. 382, 1484–1490. DOI: 10.1007/s00216-005-3302-5.
  10. Huang, Z., Timerbaev, A.R., Keppler, B.K. & Hirokawa, T. (2006). Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques. J. Chromatogr. A. 1106, 75–79. DOI: 10.1016/j.chroma.2005.09.042.
  11. Yang, H., Cui, H., Wang, L., Yan, L., Qian, Y., Zheng, X.E, Wei, W. & Zhao, J. (2014). A label-free G-quadruplex DNA-based fluorescence method for highly sensitive, direct detection of cisplatin. Sens. Actuators B Chem. 202, 714–720. DOI: 10.1016/j.snb.2014.05.027.
  12. Martinčič, A., Cemazar, M., Sersa, G., Kovač, V., Milačič, R. & Ščančar, J. (2013). A novel method for speciation of Pt in human serum incubated with cisplatin, oxaliplatin and carboplatin by conjoint liquid chromatography on monolithic disks with UV and ICP-MS detection. Talanta, 213, 141–148. DOI: 10.1016/j.talanta.2013.05.016.
  13. Yaroshenko, D.V., Grigoriev, A.V., Sidorova, A.A. & Kartsova, L.A. (2013). Determination of cisplatin in blood plasma by liquid chromatography with mass spectrometry detection. J. Anal. Chem. 68, 156–160. DOI: 10.1134/S1061934813020160.
  14. Pershagen, E., Nordholm, J. & Borbas, K.E. (2012). Luminescent lanthanide complexes with analyte-triggered antenna formation. J. Am. Chem. Soc. 134, 9832e9835. DOI: 10.1021/ja3004045.
  15. Dhanushkodi, M., Kumar, G.G.V., Balachandar, B.K., Sarveswari, S., Gandhi, S. & Rajesh, J. (2020). A simple pyrazine based ratiometric fluorescent sensor for Ni2þ ion detection. Dyes Pigm. 173, 107897. DOI: 10.1016/j.dyepig.2019.107897.
  16. Prosposito, P., Mochi, F., Ciotta, E., Casalboni, M., De Matteis, F., Venditti, I., Fontana, L., Testa, G. & Fratoddi, I. (2016). Hydrophilic silver nanoparticles with tunable optical properties: Application for the detection of heavy metals in water. Beilstein J. Nanotechnol. 7(1), 1654–1661. DOI: 10.3762/bjnano.7.157.
  17. Niu, S., Lv, Z., Liu, J., Bai, W., Yang, S. & Chen, A. (2014). Colorimetric aptasensor using unmodified gold nano-particles for homogeneous multiplex detection. PLoS One. 9(10): e109263. DOI: 10.1371/journal.pone.0109263.
  18. Sang, F., Li, X., Zhang, Z., Liu, J. & Chen, G. (2017). Recyclable colorimetric sensor of Cr3+ and Pb2+ ions simultaneously using a zwitterionic amino acid modified gold nanoparticles. Spectrochim. Acta A, 193, 109–116. DOI: 10.1016/j. saa.2017.11.048.
  19. Zhang, Y., Li, R., Xue, Q., Li, H. & Liu, J. (2015). Colorimetric determination of copper(II) using a polyamine-functionalized gold nanoparticle probe. Microchim. Acta. 182, 1677–1683. DOI: 10.1007/s00604-015-1498-4.
  20. He, Y., Cheng, F., Pang, D.W. & Tang, H.W. (2016). Colorimetric and visual determination of DNase I activity using gold nanoparticles as an indicator. Microchim. Acta. 184, 1–6. DOI: 10.1007/s00604-016-2003-4.
  21. Du, G., Zhang, D., Xia, B., Xu, L., Wu, S., Zhan, S., Ni, X., Zhou, X. & Wang, L. (2016). A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Microchim. Acta. 183, 2251–2258. DOI: 10.1007/s00604-016-1861-0.
  22. Ban, D.K., Pratihar, S.K. & Paul, S. (2015). Controlled modification of starch in the synthesis of gold nanoparticles with tunable optical properties and their application in heavy metal sensing. RSC Adv. 5, 81554–81564. DOI: 10.1039/C5RA16473G.
  23. Boudesocque, S., Mohamadou, A., Conreux, A., Marin, B. & Dupont, L. (2019). The recovery and selective extraction of gold and platinum by novel ionic liquids. Sep. Purif. Technol. 210, 824–834. DOI: 10.1016/j.seppur.2018.09.002.
  24. Mosai, A.K., Chimuka, L., Cukrowska, E.M., Kotzé, I.A. & Tutu, H. (2021). Batch and flow-through column adsorption study: recovery of Pt4+ from aqueous solutions by 3-aminopropyl (diethoxy) methylsilane functionalised zeolite (APDEMSFZ). Environ. Dev. Sustain. 23, 7041–7062. DOI: 10.1007/s10668-020-00903-x.
  25. Park, H.N., Choi, H.A. & Won, S.W. (2018). Fibrous polyethylenimine/polyvinyl chloride crosslinked adsorbent for the recovery of Pt (IV) from acidic solution: Adsorption, desorption and reuse performances. J. Clean. Prod.176, 360–369. DOI: 10.1016/j.jclepro.2017.12.160.
  26. Bilgin, F. & Imamoglu, M. (2024). Effect of spacer length between N atoms of linear alkyl triamines on adsorption of anionic platinum (IV) ions. Desalin. Water Treat. 317, 100229. DOI: 10.1016/j.dwt.2024.100229.
  27. Roh, J., Park, E.J., Park, K., Yi, J. & Kim, Y. (2010). Fast preparation of citrate-stabilized silver nanoplates and its nanotoxicity. Korean J. Chem. Eng. 27, 1897–1900. DOI: 10.1007/s11814-010-0299-z.
  28. 28.Yang, J., Zheng, H., Han, S., Jiang, Z. & Chen, X. (2015). The synthesis of nano-silver/sodium alginate composites and their antibacterial properties. RSC Adv. 5, 2378–2382. DOI: 10.1039/C4RA12836B.
  29. Li, Y., Ye, Y., Fan, Y., Zhou, J., Jia, L., Tang, B. & Wang, X. (2017) Silver Nanoprism-Loaded Eggshell Membrane: A Facile Platform for In Situ SERS Monitoring of Catalytic Reactions. Crystals. 7, 45. DOI: 10.3390/cryst7020045.
  30. Liang, M., Su, R., Huang, R., Qi, W., Yu, Y., Wang, L. & He, Z. (2014). Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces, 6(7), 4638–4649. DOI: 10.1021/am500665p.
  31. Desai, M.P., Patil, R.V. & Pawar K.D. (2020). Selective and sensitive colorimetric detection of platinum using Pseudomonas stutzeri mediated optimally synthesized antibacterial silver nanoparticles. Biotechnol. Rep. 25, e00404. DOI: 10.1016/j.btre.2019.e00404.
  32. Ardianrama, A.D., Pradyasti, A., Woo, H.C. & Kim, M.H. (2020). Colorimetric sensing of barium ion in water based on polyelectrolyte-induced chemical etching of silver nanoprisms. Dyes Pigm. 181, 108578. DOI: 10.1016/j.dyepig.2020.108578.
  33. Pu, Z.F.,Wu, B.C., Tan, Y.H., Wen, Q.L., Ling, J., & Cao Q. E. (2021). Selective Aggregation of Silver Nanoprisms Induced by Monohydrogen Phosphate and its Application for Colorimetric Detection of Chromium (III) Ions. J. Anal. Test. 5, 225–234. DOI: 10.1007/s41664-021-00183-y.
  34. Chen, N., Zhang, Y., Liu, H., Ruan, H., Dong, C., Shen, Z. & Wu, A. (2016). A supersensitive probe for rapid colori-metric detection of nickel ion based on a sensing mechanism of anti-etching. ACS Sustain. Chem. Eng. 4, 6509–6516. DOI: 10.1021/acssuschemeng.6b01326.
  35. Chen, N., Zhang, Y., Liu, H., Wu, X., Li, Y., Miao, L., Shen, Z. & Wu, A. (2016). High-performance colorimetric detection of Hg2+ based on triangular silver nanoprisms. ACS Sens., 1, 521–527. DOI: 10.1021/acssensors.6b00001.
  36. Chen, N., Zhang, Y., Liu, H., Wu, X., Li, Y., Miao, L., Shen, Z. & Wu, A. (2016). High-prformance colorimetric detection of Hg2+ based on triangular silver nanoprisms. ACS Sens., 2016, 1:521–527. DOI: 10.1021/acssensors.6b00001.
  37. Hastuti, F.W. & Kim, M.H. (2024). Silver nanoprism-mediated colourimetric sensing probe for efficient detection of Pd (II) and Pt (II) ions in water and reuse of formed bimetallic nanoprisms. Spectrochim. Acta Part A: Molec. Biomolec. Spectros. 124234. 10.1016/j.saa.2024.124234.
  38. Firdaus, M.L., Fitriani, I., Wyantuti, S., Hartati, Y.W., Khaydarov, R., Mcalister, J.A., Obata, H. & Gamo, T. (2017). Colorimetric detection of mercury(II) ion in aqueous solution using silver nanoparicles. Anal. Sci. 33, 831–837. DOI: 10.2116/analsci.33.831.
Language: English
Page range: 56 - 62
Published on: Sep 26, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Jeong Won Ko, Se Hwan Park, Weon Bae Ko, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.