Have a personal or library account? Click to login
A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis Cover

A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis

Open Access
|Sep 2024

References

  1. Turner, J.M. (2022). The matter of a clean energy future. Science 376(6600), 1361–1361. DOI:10.1126/science.add5094.
  2. Mulugetta, Y., Sokona, Y., Trotter, P.A., Fankhauser, S., Omukuti, J., Somavilla Croxatto, L., Steffen, B., Tesfamichael, M., Abraham, E. & Adam, J.-P. (2022). Africa needs context--relevant evidence to shape its clean energy future. Nature Energy 7(11), 1015–1022. DOI: 10.1038/s41560-022-01152-0.
  3. Yi, S., Abbasi, K.R., Hussain, K., Albaker, A. & Alvarado, R. (2023). Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help. Gondwana Res. 117, 41–55. DOI: 10.1016/j. gr.2022.12.021.
  4. Saqib, N., Duran, I.A., & Ozturk, I. (2023). Unraveling the interrelationship of digitalization, renewable energy, and ecological footprints within the EKC framework: empirical insights from the United States. Sustainability 15(13), 10663. DOI: 10.3390/su151310663.
  5. Adebayo, T.S. & Alola, A.A. (2023). Drivers of natural gas and renewable energy utilization in the USA: How about household energy efficiency-energy expenditure and retail electricity prices. Energy 283, 129022. DOI: 10.1016/j.energy.2023.129022.
  6. Sayed, E.T., Olabi, A.G., Alami, A.H., Radwan, A., Mdallal, A., Rezk, A. & Abdelkareem, M.A. (2023). Renewable energy and energy storage systems. Energies 16(3), 1415, DOI: 10.3390/en16031415.
  7. Irfan, M., Rehman, M.A., Razzaq, A. & Hao, Y. (2023). What derives renewable energy transition in G-7 and E-7 countries, The role of financial development and mineral markets. Energy Econ. 121, 106661. DOI: 10.1016/j.eneco.2023.106661.
  8. Zheng, J., Du, J., Wang, B., Klemeš, J.J., Liao, Q. & Liang, Y. (2023). A hybrid framework for forecasting power generation of multiple renewable energy sources. Renew. Sust. Energy Rev. 172, 113046. DOI: 10.1016/j.rser.2022.113046.
  9. Yao, Z., Lum, Y., Johnston, A., Mejia-Mendoza, L.M., Zhou, X., Wen, Y., Aspuru-Guzik, A., Sargent, E.H. & She, Z.W. (2023). Machine learning for a sustainable energy future. Nature Rev. Mater. 8(3), 202–215. DOI: 10.1038/s41578-022-00490-5.
  10. Zhang, H. (2023). Key Technologies and Development Challenges of High-proportion Renewable Energy Power Systems. Highlights in Sci. Engin. Technol. 29, 137–142. DOI: 10.54097/hset.v29i.4527.
  11. Liu, J., Wang, S., Wei, N., Chen, X., Xie, H. & Wang, J. (2021). Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Natural Gas Sci. Engin. 90, 103930. DOI: 10.1016/j.jngse.2021.103930.
  12. Agyeman, S.D. & Lin, B. (2023). The influence of natural gas (De) regulation on innovation for climate change mitigation: Evidence from OECD countries. Environ. Impact Asses. Rev. 98, 106961. DOI: 10.1016/j.eiar.2022.106961.
  13. Schmalensee, R., Stoker, T.M. & Judson, R.A. (1998). World carbon dioxide emissions: 1950–2050. Rev. Econ. Statis. 80(1), 15–27. DOI: 10.1162/003465398557294.
  14. Saleh, H.M. & Hassan, A.I. (2023). Green Conversion of Carbon Dioxide and Sustainable Fuel Synt. Fire 6(3), 128. DOI: 10.3390/fire6030128.
  15. Ritchie, H., Rosado, P. & Roser, M. (2024, January 4). Energy. Retrieved from https://ourworldindata.org/energy
  16. Noyan, O.F., Hasan, M.M. & Pala, N. (2023). A Global Review of the Hydrogen Energy Eco-System. Energies 16(3), 1484. DOI: 10.3390/en16031484.
  17. Teoh, Y.H., How, H.G., Le, T.D., Nguyen, H.T., Loo, D.L., Rashid, T. & Sher, F. (2023). A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel 333, 126525. DOI: 10.1016/j.fuel.2022.126525.
  18. Shadidi, B., Najafi, G. & Yusaf, T. (2021). A Review of Hydrogen as a Fuel in Internal Combustion Engines. Energies 14(19), 6209. DOI:10.3390/en14196209.
  19. Faramawy, S., Zaki, T. & Sakr, A.-E. (2016). Natural gas origin, composition, and processing: A review. J. Natural Gas Sci. Engin. 34, 34–54. DOI: 10.1016/j.jngse.2016.06.030.
  20. Moniz, E.J., Jacoby, H.D., Meggs, A.J., Armtrong, R., Cohn, D., Connors, S., Deutch, J., Ejaz, Q., Hezir, J. & Kaufman, G. (2011). The future of natural gas. Cambridge, MA: Massachusetts Institute of Technology. ISBN: 978-0-9828008-3-6.
  21. Okolie, J.A., Patra, B.R., Mukherjee, A., Nanda, S., Dalai, A.K. & Kozinski, J.A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. Internat. J. Hydrogen Energy 46(13), 8885–8905. DOI: 10.1016/j.ijhydene.2021.01.014.
  22. Wang, Z., Zhang, X. & Rezazadeh, A. (2021). Hydrogen fuel and electricity generation from a new hybrid energy system based on wind and solar energies and alkaline fuel cell. Energy Reports 7, 2594–2604. DOI: 10.1016/j.egyr.2021.04.060.
  23. Aminudin, M., Kamarudin, S., Lim, B., Majilan, E., Masdar, M. & Shaari, N. (2023). An overview: Current progress on hydrogen fuel cell vehicles. Internat. J. Hydrogen Energy 48(11), 4371–4388. DOI: 10.1016/j.ijhydene.2022.10.156.
  24. Singla, M.K., Nijhawan, P. & Oberoi, A.S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ. Sci. Pollut. Res. 28(13), 15607–15626. DOI:10.1007/s11356-020-12231-8.
  25. Le, O. & Loubar, K. (2010). Natural Gas : Physical Properties and Combustion Features. Natural Gas. DOI: 10.5772/9823.
  26. Rievaj, V., Gaňa, J. & Synák, F. (2019). Is hydrogen the fuel of the future? Transport. Res. Proc. 40, 469–474. DOI: 10.1016/j.trpro.2019.07.068.
  27. Yilmaz, I. & Ilbas, M. (2008). An experimental study on hydrogen–methane mixtured fuels. International Commun. Heat Mass Transfer 35(2), 178–187. DOI: 10.1016/j.icheatmasstransfer.2007.06.004.
  28. İlbaş, M. & Karyeyen, S. (2015). A numerical study on combustion behaviours of hydrogen-enriched low calorific value coal gases. Internat. J. Hydrogen Energy 40(44), 15218–15226. DOI: 10.1016/j.ijhydene.2015.04.141.
  29. Fayaz, H., Saidur, R., Razali, N., Anuar, F.S., Saleman, A. & Islam, M. (2012). An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 16(8), 5511–5528. DOI: 10.1016/j.rser.2012.06.012.
  30. Ciniviz, M. & Köse, H. (2012). Hydrogen use in internal combustion engine: a review. Internat. J. Automot. Engin. Technol. 1(1), 1–15.
  31. Dash, S.K., Chakraborty, S. & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies 16(3), 1141. DOI: 10.3390/en16031141.
  32. Yang, W.-W., Ma, X., Tang, X.-Y., Dou, P.-Y., Yang, Y.-J. & He, Y.-L. (2023). Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion. Fuel 345, 128234. DOI: 10.1016/j. fuel.2023.128234.
  33. Lim, J., Joo, C., Lee, J., Cho, H. & Kim, J. (2023). Novel carbon-neutral hydrogen production process of steam methane reforming integrated with desalination wastewater-based CO2 utilization. Desalination 548, 116284. DOI: 10.1016/j. desal.2022.116284.
  34. Okere, C.J. & Sheng, J.J. (2023). Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. Internat. J. Hydrogen Energy 48(97), 38188–38222. DOI: 10.1016/j.ijhydene.2023.06.135.
  35. Dai, F., Zhang, S., Luo, Y., Wang, K., Liu, Y. & Ji, X. (2023). Recent Progress on Hydrogen-Rich Syngas Production from Coal Gasification. Processes 11(6), 1765. DOI: 10.3390/pr11061765.
  36. Cao, L., Iris, K., Xiong, X., Tsang, D.C., Zhang, S., Clark, J.H., Hu, C., Ng, Y.H., Shang, J. & Ok, Y.S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 186, 109547. DOI: 10.1016/j.envres.2020.109547.
  37. Dincer, I. & Aydin, M.I. (2023). New paradigms in sustainable energy systems with hydrogen. Energy Convers. Manag. 283, 116950. DOI: 10.1016/j.enconman.2023.116950.
  38. Hota, P., Das, A. & Maiti, D.K. (2023). A short review on generation of green fuel hydrogen through water splitting. Internat. J. Hydrogen Energy 48(2), 523–541. DOI: 10.1016/j. ijhydene.2022.09.264.
  39. Ji, M. & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Internat. J. Hydrogen Energy 46(78), 38612–38635. DOI: 10.1016/j.ijhydene.2021.09.142.
  40. Hossain, M.A., Islam, M.R., Hossain, M.A. & Hossain, M. (2023). Control strategy review for hydrogen-renewable energy power system. J. Energy Storage 72, 108170. DOI: 10.1016/j.est.2023.108170.
  41. Incer-Valverde, J., Korayem, A., Tsatsaronis, G. & Morosuk, T. (2023). Colors of hydrogen: Definitions and carbon intensity. Energy Conver. Manag. 291, 117294. DOI: 10.1016/j. enconman.2023.117294.
  42. Howarth, R.W. & Jacobson, M.Z. (2021). How green is blue hydrogen. Energy Sci. & Engin. 9(10), 1676–1687. DOI: 10.1002/ese3.956.
  43. Dincer, I. (2012). Green methods for hydrogen production. Internat. J. Hydrogen Energy 37(2), 1954–1971. DOI: 10.1016/j. ijhydene.2011.03.173.
  44. Dawood, F., Anda, M. & Shafiullah, G. (2020). Hydrogen production for energy: An overview. Internat. J. Hydrogen Energy 45(7), 3847–3869. DOI: 10.1016/j.ijhydene.2019.12.059.
  45. Viteri, J.P., Viteri, S., Alvarez-Vasco, C. & Henao, F. (2023). A systematic review on green hydrogen for off-grid communities –technologies, advantages, and limitations. Inter-nat. J. Hydrogen Energy 48(52), 19751–19771. DOI: 10.1016/j. ijhydene.2023.02.078.
  46. Vidas, L. & Castro, R. (2021). Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Appl. Sci. 11(23), 11363. DOI: 10.3390/app112311363.
  47. Hassan, Q., Tabar, V.S., Sameen, A.Z., Salman, H.M. & Jaszczur, M. (2023). A review of green hydrogen production based on solar energy; techniques and methods. Energy Harvesting and Systems 11(1). DOI: 10.1515/ehs-2022-0134.
  48. Norouzi, N. (2022). Hydrogen production in the light of sustainability: A comparative study on the hydrogen production technologies using the sustainability index assessment method. Nuclear Engin. Technol. 54(4), 1288–1294. DOI: 10.1016/j. net.2021.09.035.
  49. Kumar, S.S. & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–A review. Mat. Sci. for Energy Technol. 2(3), 442–454. DOI: 10.1016/j.mset.2019.03.002.
  50. Hassan, Q., Sameen, A.Z., Salman, H.M. & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. Internat. J. Hydrogen Energy 48(88), 34299–34315. DOI: 10.1016/j. ijhydene.2023.05.126.
  51. Le, T.T., Sharma, P., Bora, B.J., Tran, V.D., Truong, T.H., Le, H.C. & Nguyen, P.Q.P. (2024). Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Internat. J. Hydrogen Energy 54, 791–816. DOI: 10.1016/j.ijhydene.2023.08.044.
  52. Alkhadra, M.A., Su, X., Suss, M.E., Tian, H., Guyes, E.N., Shocron, A.N., Conforti, K.M., De Souza, J.P., Kim, N. & Tedesco, M. (2022). Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122(16), 13547–13635. DOI: 10.1021/acs.chemrev.1c00396.
  53. Lacasa, E., Cotillas, S., Saez, C., Lobato, J., Cañizares, P. & Rodrigo, M. (2019). Environmental applications of electrochemical technology. What is needed to enable full-scale applications. Current Opinion Electrochem. 16, 149–156. DOI: 10.1016/j.coelec.2019.07.002.
  54. Inocêncio, C.V.M., Holade, Y., Morais, C., Kokoh, K.B. & Napporn, T.W. (2022). Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy. Electrochem. Sci. Adv. 3(3). DOI: 10.1002/elsa.202100206
  55. Galitskaya, E. & Zhdaneev, O. (2022). Development of electrolysis technologies for hydrogen production: A case study of green steel manufacturing in the Russian Federation. Environ. Technol. & Innov. 27, 102517. DOI: 10.1016/j.eti.2022.102517.
  56. Yu, M., Budiyanto, E. & Tüysüz, H. (2022). Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chemie Internat. Edition 61(1), e202103824. DOI: 10.1002/anie.202103824.
  57. Veeramani, K., Janani, G., Kim, J., Surendran, S., Lim, J., Jesudass, S.C., Mahadik, S., Kim, T.-H., Kim, J.K. & Sim, U. (2023). Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments. Renew. Sustainable Energy Rev. 177, 113227. DOI: 10.1016/j. rser.2023.113227.
  58. Chen, Z., Wei, W., Song, L. & Ni, B.-J. (2022). Hybrid water electrolysis: a new sustainable avenue for energy-saving hydrogen production. Sustainable Horizons 1, 100002. DOI: 10.1016/j.horiz.2021.100002.
  59. Jiang, T., Ansar, S.A., Yan, X., Chen, C., Fan, X., Razmjooei, F., Liao, H. (2019). In Situ Electrochemical Activation of a Codoped Heterogeneous System as a Highly Efficient Catalyst for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. ACS Appl. Energy Mater. 2(12), 8809–8817. DOI: 10.1021/acsaem.9b01807.
  60. Du, X., Fu, W., Su, P., Cai, J. & Zhou, M. (2020). Internal-micro-electrolysis-enhanced heterogeneous electro--Fenton process catalyzed by Fe/Fe3C@ PC core–shell hybrid for sulfamethazine degradation. Chem. Engin. J. 398, 125681. DOI: 10.1016/j.cej.2020.125681.
  61. Yang, Q., Ke, J., Li, H., Huang, W., Wang, D., Liu, Y., Chen, J. & Guo, R. (2022). Mechanism and practical application of homogeneous–heterogeneous hybrid catalysts in electrolytic system for high COD chemical waste acid treatment. Chem. Engin. J. 449, 137767. DOI: 10.1016/j.cej.2022.137767.
  62. Xu, Y. & Zhang, B. (2019). Recent advances in electro-chemical hydrogen production from water assisted by alternative oxidation reactions. Chem. Electro. Chem. 6(13), 3214–3226. DOI: 10.1002/celc.201900675.
  63. Li, Y., Wei, X., Chen, L. & Shi, J. (2021). Electrocatalytic hydrogen production trilogy. Angew. Chem. Internat. Edition 60(36), 19550–19571. DOI: 10.1002/anie.202009854.
  64. Anwar, S., Khan, F., Zhang, Y. & Djire, A. (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis. Internat. J. Hydrogen Energy 46(63), 32284–32317. DOI: 10.1016/j.ijhydene.2021.06.191.
  65. Santos, E., Nazmutdinov, R. & Schmickler, W. (2020). Electron transfer at different electrode materials: Metals, semiconductors, and graphene. Current Opinion Electroch. 19, 106–112. DOI: 10.1016/j.coelec.2019.11.003.
  66. Burke, L.D. & Naser, N.S. (2005). Metastability and electrocatalytic activity of ruthenium dioxide cathodes used in water electrolysis cells. J. Appl. Electrochem. 35, 931–938. DOI: 10.1007/s10800-005-5290-8.
  67. Over, H. (2021). Fundamental studies of planar single--crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. Acs Catalysis 11(14), 8848–8871. DOI: 10.1021/acscatal.1c01973.
  68. Yavuz, Y. & Koparal, A.S. (2006). Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode. J. Hazard. Mat. 136(2), 296–302. DOI: 10.1016/j.jhazmat.2005.12.018.
  69. Ollo, K., Aliou Guillaume, P.L., Placide, S.S., Etienne, K.K. & Lassiné, O. (2020). Voltammetric study of formic acid oxidation via active chlorine on IrO2/Ti and RuO2/Ti electrodes. Mediter. J. Chem. 10(8), 799. DOI: 10.13171/mjc10802010271525ko.
  70. Lim, A., Kim, J., Lee, H.J., Kim, H.-J., Yoo, S.J., Jang, J.H., Park, H.Y., Sung, Y.-E. & Park, H.S. (2020). Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells. Appl. Catalysis B: Environ. 272, 118955. DOI: 10.1016/j.apcatb.2020.118955.
  71. Han, S.B., Mo, Y.H., Lee, Y.S., Lee, S.G., Park, D.H. & Park, K.W. (2020). Mesoporous iridium oxide/Sb-doped SnO2 nanostructured electrodes for polymer electrolyte membrane water electrolysis. Internat. J. Hydrogen Energy 45(3), 1409–1416. DOI: 10.1016/j.ijhydene.2019.11.109.
  72. Wang, S., Lu, A. & Zhong, C.-J. (2021). Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 8, 1–23. DOI: 10.1186/s40580-021-00254-x.
  73. Xu, X., Sun, H., Jiang, S.P. & Shao, Z. (2021). Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 1(4), 460–481. DOI: 10.1002/sus2.34.
  74. Audichon, T., Mayousse, E., Morisset, S., Morais, C., Comminges, C., Napporn, T.W. & Kokoh, K.B. (2014). Electro-activity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Internat. J. Hydrogen Energy 39(30), 16785–16796. DOI: 10.1016/j.ijhydene.2014.07.170.
  75. Izurieta, E.M., Pedernera, M.N. & López, E. (2019). Study of a thermally integrated parallel plates reactor for hydrogen production. Chem. Engin. Sci. 196, 344–353. DOI: 10.1016/j.ces.2018.11.011.
  76. Fujiwara, N., Nagase, H., Tada, S. & Kikuchi, R. (2021). Hydrogen production by steam electrolysis in solid acid electrolysis cells. Chem. Sus. Chem. 14(1), 417–427. DOI: 10.1002/cssc.202002281.
  77. Ibrahim, D.S., Veerabahu, C., Palani, R., Devi, S. & Balasubramanian, N. (2013). Flow dynamics and mass transfer studies in a tubular electrochemical reactor with a mesh electrode. Computers & Fluids 73, 97–103. DOI: 10.1016/j. compfluid.2012.12.001.
  78. Reynard, D., Bolik-Coulon, G., Maye, S. & Girault, H.H. (2021). Hydrogen production on demand by redox-mediated electrocatalysis: A kinetic study. Chem. Engin. J. 407, 126721. DOI: 10.1016/j.cej.2020.126721.
  79. Bai, X.-S., Yang, W.-W., Tang, X.-Y., Yang, F.-S., Jiao, Y.-H. & Yang, Y. (2021). Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels. Energy 232, 121101. DOI: 10.1016/j.energy.2021.121101.
  80. Arenas, L., De León, C.P. & Walsh, F.C. (2019). Three-dimensional porous metal electrodes: Fabrication, characterisation and use. Current Opinion Electrochem. 16, 1–9. DOI: 10.1016/j.coelec.2019.02.002.
  81. Ahmed, M. & Dincer, I. (2019). A review on photo-electrochemical hydrogen production systems: Challenges and future directions. Internat. J. Hydrogen Energy 44(5), 2474–2507. DOI: 10.1016/j.ijhydene.2018.12.037.
  82. Ibrahim, D.S., A.P. Anand, A. Muthukrishnaraj, R. Thilakavathi & N. Balasubramanian. (2013). In situ electro-catalytic treatment of a Reactive Golden Yellow HER synthetic dye effluent. J. Environ.Chem. Engin. 1(1-2), 2–8. DOI: 10.1016/j. jece.2013.02.001.
  83. Lioubashevski, O., Katz, E. & Willner, I. (2004). Magnetic field effects on electrochemical processes: a theoretical hydrodynamic model. J. Phys.Chem. B 108(18), 5778–5784. DOI: 10.1021/jp037785q.
  84. Vázquez, L., Alvarez-Gallegos, A., Sierra, F., de León, C.P. & Walsh, F. (2010). Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modelling. Electrochim. Acta 55(10), 3446–3453. DOI: 10.1016/j.electacta.2009.08.067.
  85. Zhang, X., Pitol Filho, L., Torras, C. & Garcia-Valls, R. (2005). Experimental and computational study of proton and methanol permeabilities through composite membranes. J. Power Sourc.145(2), 223–230. DOI: 10.1016/j.jpowsour.2005.01.074.
  86. Martínez-Delgadillo, S., Gutiérrez, M., Barceló, I. & Méndez, J. (2010). Performance of a tubular electrochemical reactor, operated with different inlets, to remove Cr (VI) from wastewater. Comp. Chem. Engin. 34(4), 491–499. DOI: 10.1016/j.compchemeng.2009.05.016.
  87. Abdullah, T.A., Juzsakova, T., Le, P.C., Kułacz, K., Salman, A.D., Rasheed, R.T., Nguyen, D.D. (2022). Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water. Environ. Pollut. 306, 119372. DOI: 10.1016/j.envpol.2022.119372.
  88. Mohammed, M.N., Aljibori, H.S.S., Jweeg, M.J., Al Oqaili, F., Abdullah, T.A., Abdullah, O.I., Meharban F., Rashed R.T., Aldulaimi M., Al-Azawi, K. (2024). A Comprehensive Review on Graphene Oxide Based Nanocomposites for Wastewater Treatment. Polish J. Chem. Technol. 26(1), 64–79. DOI:10.2478/pjct-2024-0007.
  89. Abdullah, T.A., Juzsakova, T., Rasheed, R.T., Salman, A.D., Adelikhah, M., Cuong, L.P., & Cretescu, I. (2021). V2O5 Nanoparticles for Dyes Removal from Water. Chem. J. Moldova 16(2), 102–111. DOI: 10.19261/cjm.2021.911.
Language: English
Page range: 39 - 50
Published on: Sep 26, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Qusay Al-Obaidi, Dhorgham Skban Ibrahim, M.N. Mohammed, Abbas J. Sultan, Faris H. Al-Ani, Thamer Adnan Abdullah, Oday I. Abdullah, Nora Yehia Selem, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.