References
- Akin, M., Bartkiene, E., Fatih Özogul, F., Eyduran, S.P., Trif, M., Lorenzo J.M. & Rocha J.M. (2023). Conversion of organic wastes into biofuel by microorganisms: A bibliometric review. Clean. Circul. Bioeconom. (6), 100053. DOI: 10.1016/j.clcb.2023.100053.
- Aziz, T., Shah, Z., Sarwar, A., Ullah, N., Khan, A.A., Sameeh, M.Y., Haiying, C. & Lin, L. (2023). Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04283-w.
- IRENA. (2018). International Renewable Energy Agency. Report about Renewable Energy Outlook: Egypt ISBN 978-92-9260-069-3, p.-W.I.O.
- Szostek, M., Kaniuczak, J., Hajduk, E., Stanek-Tarkowska, J., Jasiński, T., Niemiec, W. & Smusz, R. (2018). Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Archiv. Environ. Protec. 44(3), 42–50. DOI: 10.24425/122285.
- De Almeida, M.A. & Colombo, R. (2021). Production chain of first-generation sugarcan bioethanol: Characterization and value-added application of wastes. BioEner. Res. 1–16. DOI: 10.1007/s12155-021-10301-4
- Hawrot-Paw, M., Koniuszy, A., Zając, G., Szyszlak-Bargłowicz, J. & Jaklewicz, J. (2020). Production of second generation bioethanol from straw during simultaneous microbial saccharification and fermentation. Archiv. Environ. Protec. 48(1), 47–52. DOI: 10.24425/aep.2020.132525.
- Perveen, I., Bukhari, B., Sarwar, A., Aziz, T., Koser, N., Younis, H., Ahmad, Q., Sabahat, S., Tzora, A. & Skoufos, I. (2023). Applications and efficacy of traditional to emerging trends in lactofermentation and submerged cultivation of edible mushrooms. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04694-9.
- Leta, D., Solomon, L., Chavan, R.B., Daniel, M. & Anbessa, D. (2015). Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes. Environ. Ecol. Res. 3(3), 65–71. DOI: 10.13189/eer.2015.030303.
- Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Paulino do Carmo, I.E. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland. Archiv. Environ. Protec. 45(3), 99–108. DOI: 10.24425/aep.2019.128646.
- Amir, S. (2005). Contribution à la valorisation de boues de stations d’épuration par compostage: Devenir des micropolluantsmétalliques et organiques et bilanhumique du composté. Doctorat, National Institute of Polytechnique, Toulouse, France, 341.
- Elsayed, M., Eraky, M., Osman, A., Wang, J., Farghali, M., Rashwan, A.K., Yacoub, I.H., Hanelt, D. & Abomohra, A. (2023). Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: a review. Environ. Chem. Let. DOI: 10.1007/s10311-023-01671-6.
- Cesaro, A. & Belgiorno, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. 8(8), 8121–8144. DOI: 10.3390/en8088121
- Venko, B. (2017). Hand book, Biogas, Biodiesel and Bioethanol as Multifunctional Renewable fuels and raw Materials. (pp. 5772–5734).
- Naha, A., Debroy, R., Sharma, D., Shah, M.P. & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Clean. Circul. Bioeconom. (5), 100050. DOI: 10.1016/j.clcb.2023.100050.
- Chander, A.M., Singh, N.K. & Venkateswaran, K. (2023). Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space. J. Indian Inst. Sci. A Multidiscip. Rev. J. 103(3), 833–838. DOI: 10.1007/s41745-023-00388-3.
- Dębowski, M., Grala, A., Zieliński, M., Dudek, M. (2022). Efficiency of The Methane Fermentation Process of Macroalgae Biomass Originating From Puck Bay. Archives of Environmental Protection, 38(4), 99–107. DOI: 10.2478/v10265-012-0033-5.
- Kisielewska, M., Dębowski, M. & Zieliński, M. (2020). Comparison of biogas production from anaerobic digestion of microalgae species belonged to various taxonomic groups. Archiv. Environ. Protec. 46(1), 33–40. DOI 10.24425/aep.2020.132523.
- Charnay, F. (2005). Compostage des déchetsurbainsdans les Pays en développement :élaborationd’unedémarcheméthodologique pour une production pérenne de compost. Doctorat University of Limoges.
- Laskri, N. & Nawel, N. (2015). Comparative Study for Biogas Production from Different Wastes. Inter. J. Bio-Sci. Bio-Technol. 7(4), 39–46. DOI: 10.14257/ijbsbt.2015.7.4.05.
- Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. & Vavilin, V.A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 45(10), 65–73. DOI: 10.2166/wst.2002.0292.
- Page, A.L., Miller, R.H. & Keeney, D.R. (1982). Methods of Soil Analysis. Part 2. Soil Soc. Amer. Inc. Madison, Wisconsin, U.S.A. (pp. 310).
- APHA. (1992). A.P.H., Association, Standard methods for the examination of water and waste water. 18th, Washington, D.C.
- Jodice, R., Luzzati, A. & Nappi, P. (1982). The influence of organic fertilizers, obtained from poplar barks, on the correction of iron chlorosis of Luipinus albus L. Plant. Soil. (65), 309–317. DOI: 10.1007/BF02375052.
- Richards, L.A. (1954). Diagnosis and Improvement of Saline and Alkali Soil. U.S. Dept. Agric. (60), 50–75.
- Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall of Englewood Cliffs, New Jersy, (pp. 925).
- Deng, S.P. & Tabatabai, M.A. (1994). Cellulase activity of soils. Soil Biol. Biochem. 26(10), 1347–1354. DOI: 10.1016/0038-0717(94)90216-x.
- Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytic. Chem. 31(3), 426–428.
- Kunitz, M. (1947). Crystalline Soybean Trypsin Inhibitor, II. General Properties. J. Gener. Physiol. 30(4), 291–310.
- Caputi, J.A., Ueda, M. & Brown, T. (1968). Spectrophotometric determination of ethanol in wine. Amer. J. Enol. Vitic. 19(3), 160–165. DOI: 10.5344/ajev.1968.19.3.160.
- Johnson, L.E., Bond, C.J. & Fribourg, H. (1959). Methods for studying soil microflora-plant disease relationships. Minneapolis: Burgess Publishing Company.
- Maramba, F.D., Obias, E.D., Julian, B., Taganas, C., Alumbro, R.D. & Judan, A.A. (1978). Biogas and waste recycling, the Philippine experience. Maya farms division, liberity flour mills, Inc. Metro Manila, Philippines.
- Wujcik, W.J. & Jewell, W.J. (1980). Dry anaerobic fermentation. Biotechnology and Bioengineering Symp., Jon Willey & Sons, Inc. N.Y. 10, 43–65. https://www.osti.gov/biblio/6872238.
- Chomini, M., Ogbonna, C., Falemara, B. & Micah, P. (2015). Effect of codigestion of cow dung and poultry manure on biogas yield, proximate and amino acid contents of their effluents. IOSR J. Agric. Veterin. Sci. 8(11), 48–56. DOI: 10.9790/2380-081114856.
- Nnabuchi, M., Akubuko, F., Augustine, C. & Ugwu, G. (2012). Assessment of the effect of co-digestion of chicken dropping and cow dung on biogas generation. Glob. J. Sci. Front. Res. Phys. Space Scie. 12(7), Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary? DOI: 10.1.1.349.3196.
- Afifi, M.M. & Mahmoud, Y.I.S.C. (2020). Biogas generation from co-digestion manure, poultry waste and kitchen refuses. Nation. Egypt. J. Microbiol. 55(1), 94–112. https://www.ajol.info/index.php/nejmi.
- El-Akshar Y.S. & Faisal H.S.Y. (2020). Anaerobic Digestion of Food Wastes under Different Concentrations of Total Solids. Inter. J. Environ. 9(3), 159–170. DOI: 10.36632/ije/2020.9.3.10.
- Bajpai, P. (2017). Basics of anaerobic digestion process. In Springer Briefs in Applied Sciences and Technology, Singapore. (pp. 7–12).
- Khatoon, N., Ullah, N., Sarwar, A., Ur Rahman, S., Khan, A. A., Aziz, T., Alharbi, M. & Alshammari, A. (2023). Isolation and identification of protease-producing Bacillus strain from cold climate soil and optimization of its production by applying different fermentation conditions Appl. Ecol. Environ. Res. 21(4), 3391–3401. DOI: 10.15666/aeer/2104_33913401.
- Dinova, N., Belouhova, M., Schneider, I., Rangelov, J. & Topalova, Y. (2018). Control of biogas production process by enzymat and fluorescent image analysis. Biotechnol. Biotechnologic. Equip. 32(2), 366–375. DOI: 10.1080/13102818.2018.1425637.
- Ullah, N., Ur Rehman, M., Sarwar, A., Nadeem, M., Nelofer, R., Irfan, M., Idrees, M., Ali, U., Naz, S. & Aziz, T. (2023). Effect of bioprocess parameters on alkaline protease production by locally isolated Bacillus cereus AUST7 using tannery waste in submerged fermentation. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04498-x.
- Alessandra, C. & Vincenzo, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. (8), 8121–8144. DOI: 10.3390/en8088121
- Bochmann, G., Herfellner, T., Susanto, F., Kreuter, F. & Pesta, G. (2018). Application of enzymes in anaerobic digestion. Water Sci. Technol. 56(10), 29–35. DOI: 10.2166/wst.2007.727.