Have a personal or library account? Click to login
Optimization of the biofuel production by idealized fermentation of the animal manure, chicken wastes, and sewage sludge Cover

Optimization of the biofuel production by idealized fermentation of the animal manure, chicken wastes, and sewage sludge

Open Access
|Jul 2024

References

  1. Akin, M., Bartkiene, E., Fatih Özogul, F., Eyduran, S.P., Trif, M., Lorenzo J.M. & Rocha J.M. (2023). Conversion of organic wastes into biofuel by microorganisms: A bibliometric review. Clean. Circul. Bioeconom. (6), 100053. DOI: 10.1016/j.clcb.2023.100053.
  2. Aziz, T., Shah, Z., Sarwar, A., Ullah, N., Khan, A.A., Sameeh, M.Y., Haiying, C. & Lin, L. (2023). Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04283-w.
  3. IRENA. (2018). International Renewable Energy Agency. Report about Renewable Energy Outlook: Egypt ISBN 978-92-9260-069-3, p.-W.I.O.
  4. Szostek, M., Kaniuczak, J., Hajduk, E., Stanek-Tarkowska, J., Jasiński, T., Niemiec, W. & Smusz, R. (2018). Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Archiv. Environ. Protec. 44(3), 42–50. DOI: 10.24425/122285.
  5. De Almeida, M.A. & Colombo, R. (2021). Production chain of first-generation sugarcan bioethanol: Characterization and value-added application of wastes. BioEner. Res. 1–16. DOI: 10.1007/s12155-021-10301-4
  6. Hawrot-Paw, M., Koniuszy, A., Zając, G., Szyszlak-Bargłowicz, J. & Jaklewicz, J. (2020). Production of second generation bioethanol from straw during simultaneous microbial saccharification and fermentation. Archiv. Environ. Protec. 48(1), 47–52. DOI: 10.24425/aep.2020.132525.
  7. Perveen, I., Bukhari, B., Sarwar, A., Aziz, T., Koser, N., Younis, H., Ahmad, Q., Sabahat, S., Tzora, A. & Skoufos, I. (2023). Applications and efficacy of traditional to emerging trends in lactofermentation and submerged cultivation of edible mushrooms. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04694-9.
  8. Leta, D., Solomon, L., Chavan, R.B., Daniel, M. & Anbessa, D. (2015). Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes. Environ. Ecol. Res. 3(3), 65–71. DOI: 10.13189/eer.2015.030303.
  9. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Paulino do Carmo, I.E. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland. Archiv. Environ. Protec. 45(3), 99–108. DOI: 10.24425/aep.2019.128646.
  10. Amir, S. (2005). Contribution à la valorisation de boues de stations d’épuration par compostage: Devenir des micropolluantsmétalliques et organiques et bilanhumique du composté. Doctorat, National Institute of Polytechnique, Toulouse, France, 341.
  11. Elsayed, M., Eraky, M., Osman, A., Wang, J., Farghali, M., Rashwan, A.K., Yacoub, I.H., Hanelt, D. & Abomohra, A. (2023). Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: a review. Environ. Chem. Let. DOI: 10.1007/s10311-023-01671-6.
  12. Cesaro, A. & Belgiorno, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. 8(8), 8121–8144. DOI: 10.3390/en8088121
  13. Venko, B. (2017). Hand book, Biogas, Biodiesel and Bioethanol as Multifunctional Renewable fuels and raw Materials. (pp. 5772–5734).
  14. Naha, A., Debroy, R., Sharma, D., Shah, M.P. & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Clean. Circul. Bioeconom. (5), 100050. DOI: 10.1016/j.clcb.2023.100050.
  15. Chander, A.M., Singh, N.K. & Venkateswaran, K. (2023). Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space. J. Indian Inst. Sci. A Multidiscip. Rev. J. 103(3), 833–838. DOI: 10.1007/s41745-023-00388-3.
  16. Dębowski, M., Grala, A., Zieliński, M., Dudek, M. (2022). Efficiency of The Methane Fermentation Process of Macroalgae Biomass Originating From Puck Bay. Archives of Environmental Protection, 38(4), 99–107. DOI: 10.2478/v10265-012-0033-5.
  17. Kisielewska, M., Dębowski, M. & Zieliński, M. (2020). Comparison of biogas production from anaerobic digestion of microalgae species belonged to various taxonomic groups. Archiv. Environ. Protec. 46(1), 33–40. DOI 10.24425/aep.2020.132523.
  18. Charnay, F. (2005). Compostage des déchetsurbainsdans les Pays en développement :élaborationd’unedémarcheméthodologique pour une production pérenne de compost. Doctorat University of Limoges.
  19. Laskri, N. & Nawel, N. (2015). Comparative Study for Biogas Production from Different Wastes. Inter. J. Bio-Sci. Bio-Technol. 7(4), 39–46. DOI: 10.14257/ijbsbt.2015.7.4.05.
  20. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. & Vavilin, V.A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 45(10), 65–73. DOI: 10.2166/wst.2002.0292.
  21. Page, A.L., Miller, R.H. & Keeney, D.R. (1982). Methods of Soil Analysis. Part 2. Soil Soc. Amer. Inc. Madison, Wisconsin, U.S.A. (pp. 310).
  22. APHA. (1992). A.P.H., Association, Standard methods for the examination of water and waste water. 18th, Washington, D.C.
  23. Jodice, R., Luzzati, A. & Nappi, P. (1982). The influence of organic fertilizers, obtained from poplar barks, on the correction of iron chlorosis of Luipinus albus L. Plant. Soil. (65), 309–317. DOI: 10.1007/BF02375052.
  24. Richards, L.A. (1954). Diagnosis and Improvement of Saline and Alkali Soil. U.S. Dept. Agric. (60), 50–75.
  25. Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall of Englewood Cliffs, New Jersy, (pp. 925).
  26. Deng, S.P. & Tabatabai, M.A. (1994). Cellulase activity of soils. Soil Biol. Biochem. 26(10), 1347–1354. DOI: 10.1016/0038-0717(94)90216-x.
  27. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytic. Chem. 31(3), 426–428.
  28. Kunitz, M. (1947). Crystalline Soybean Trypsin Inhibitor, II. General Properties. J. Gener. Physiol. 30(4), 291–310.
  29. Caputi, J.A., Ueda, M. & Brown, T. (1968). Spectrophotometric determination of ethanol in wine. Amer. J. Enol. Vitic. 19(3), 160–165. DOI: 10.5344/ajev.1968.19.3.160.
  30. Johnson, L.E., Bond, C.J. & Fribourg, H. (1959). Methods for studying soil microflora-plant disease relationships. Minneapolis: Burgess Publishing Company.
  31. Maramba, F.D., Obias, E.D., Julian, B., Taganas, C., Alumbro, R.D. & Judan, A.A. (1978). Biogas and waste recycling, the Philippine experience. Maya farms division, liberity flour mills, Inc. Metro Manila, Philippines.
  32. Wujcik, W.J. & Jewell, W.J. (1980). Dry anaerobic fermentation. Biotechnology and Bioengineering Symp., Jon Willey & Sons, Inc. N.Y. 10, 43–65. https://www.osti.gov/biblio/6872238.
  33. Chomini, M., Ogbonna, C., Falemara, B. & Micah, P. (2015). Effect of codigestion of cow dung and poultry manure on biogas yield, proximate and amino acid contents of their effluents. IOSR J. Agric. Veterin. Sci. 8(11), 48–56. DOI: 10.9790/2380-081114856.
  34. Nnabuchi, M., Akubuko, F., Augustine, C. & Ugwu, G. (2012). Assessment of the effect of co-digestion of chicken dropping and cow dung on biogas generation. Glob. J. Sci. Front. Res. Phys. Space Scie. 12(7), Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary? DOI: 10.1.1.349.3196.
  35. Afifi, M.M. & Mahmoud, Y.I.S.C. (2020). Biogas generation from co-digestion manure, poultry waste and kitchen refuses. Nation. Egypt. J. Microbiol. 55(1), 94–112. https://www.ajol.info/index.php/nejmi.
  36. El-Akshar Y.S. & Faisal H.S.Y. (2020). Anaerobic Digestion of Food Wastes under Different Concentrations of Total Solids. Inter. J. Environ. 9(3), 159–170. DOI: 10.36632/ije/2020.9.3.10.
  37. Bajpai, P. (2017). Basics of anaerobic digestion process. In Springer Briefs in Applied Sciences and Technology, Singapore. (pp. 7–12).
  38. Khatoon, N., Ullah, N., Sarwar, A., Ur Rahman, S., Khan, A. A., Aziz, T., Alharbi, M. & Alshammari, A. (2023). Isolation and identification of protease-producing Bacillus strain from cold climate soil and optimization of its production by applying different fermentation conditions Appl. Ecol. Environ. Res. 21(4), 3391–3401. DOI: 10.15666/aeer/2104_33913401.
  39. Dinova, N., Belouhova, M., Schneider, I., Rangelov, J. & Topalova, Y. (2018). Control of biogas production process by enzymat and fluorescent image analysis. Biotechnol. Biotechnologic. Equip. 32(2), 366–375. DOI: 10.1080/13102818.2018.1425637.
  40. Ullah, N., Ur Rehman, M., Sarwar, A., Nadeem, M., Nelofer, R., Irfan, M., Idrees, M., Ali, U., Naz, S. & Aziz, T. (2023). Effect of bioprocess parameters on alkaline protease production by locally isolated Bacillus cereus AUST7 using tannery waste in submerged fermentation. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04498-x.
  41. Alessandra, C. & Vincenzo, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. (8), 8121–8144. DOI: 10.3390/en8088121
  42. Bochmann, G., Herfellner, T., Susanto, F., Kreuter, F. & Pesta, G. (2018). Application of enzymes in anaerobic digestion. Water Sci. Technol. 56(10), 29–35. DOI: 10.2166/wst.2007.727.
Language: English
Page range: 48 - 56
Published on: Jul 12, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mohamed M. I. Afifi, Ashraf A. El-Shehawy, Fatma A. A. Ali, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.