Have a personal or library account? Click to login
Numerical Modeling of Heat Transfer and Flow Field in a Novel Calcinator Cover

Numerical Modeling of Heat Transfer and Flow Field in a Novel Calcinator

Open Access
|Jul 2024

References

  1. Serrano, D.P., García, R.A., Linares, M. & Gil, B. (2012). Influence of the calcination treatment on the catalytic properties of hierarchical ZSM-5. Chem. Eng. Sci. 179(1), 91–101. DOI: 10.1016/j.cattod.2011.06.029.
  2. Scherzer, J. (1990). Octane-enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Catal. Rev. Sci. Eng. 31(3), 215–354. DOI: 10.1002/chin.199025325.
  3. Kunkeler, P.J., van der Waal, J.C., van Bokhoven, J.A., Koningsberger, D.C. & van Bekkum, H. (1998). The Relationship Between Calcination Procedure, Aluminum Configuration and Lewis Acidity. Chem. Eng. Sci. 180(2), 234–244. DOI: 10.1006/jcat.1998.2273.
  4. Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V., Fernandes-Machado & Nádia R.C. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts. Mater. Char. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005.
  5. Shahrbabaki, A.S., Kalantar, V. & Mansouri, S.H. (2023). Analytical and numerical considerations of the minimum fluidization velocity of the molybdenite particles. Mater. Mater. Mech. 10(4), 769–776. DOI: 10.1007/s40571-022-00528-z.
  6. Yang, L. & Farouk, B. (1997). Modeling of solid particle flow and heat transfer in rotary kiln calciners. J. Air & Waste Manage. Assn. 47(11), 1189–1196. DOI: 10.1080/10473289.1997.10464069.
  7. Mikulčić, H., von Berg, E., Vujanović, M., Priesching, P., Tatschl, R. & Duić, N. (2012). CFD analysis of a cement calciner for a cleaner cement production. Chem. Eng. Trans. 29, 1513–1518. DOI: 10.3303/CET1229253.
  8. Johansson, S., Westerberg, L.G. & Lundstrom, T.S. (2014). Gas and particle flow in a spray roaster. JAFM, 7(2), 187–196. DOI: 10.36884/jafm.7.02.20339.
  9. Marsh, C. (2009). CFD modelling of alumina calciner furnaces. In Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne, 1-4.
  10. Kanellis, G., Zeneli, M., Nikolopoulos, N., Hofmann, C., Ströhle, J., Karellas, S. & Konttinen, J. (2023). CFD modelling of an indirectly heated calciner reactor, utilized for CO2 capture, in an Eulerian framework. Fuel, 346, 128251. DOI: 10.1016/j.fuel.2023.128251.
  11. Chilka, A.G. & Ranade, V.V. (2019). CFD modelling of almond drying in a tray dryer. Chem. Eng. Sci. 97(2), 560–572. DOI: 10.1002/cjce.23357.
  12. Zeneli, M., Nikolopoulos, A., Nikolopoulos, N., Grammelis, P., Karellas, S. & Kakaras, E. (2017). Simulation of the reacting flow within a pilot scale calciner by means of a three phase TFM model. Fuel Process. Technol. 162, 105–125. DOI: 10.1016/j.fuproc.2017.03.032.
  13. Havryliv, R. & Maystruk, V. (2017). Development of combustion model in the industrial cyclone-calciner furnace using CFD-modeling. Chem. Chem. Technol. 11(1), 71–80. DOI: 10.23939/chcht11.01.071.
  14. Nakhaei, M., Hessel, C.E., Wu, H., Grévain, D., Zakrzewski, S., Jensen, L.S., Glarborg P. & Dam-Johansen, K. (2018). Experimental and CPFD study of gas–solid flow in a cold pilot calciner. Powder Technol. 340, 99–115. DOI: 10.1016/j.powtec.2018.09.008.
  15. Xiao, J., Huang, J., Zhong, Q., Zhang, H. & Li, J. (2016). Modeling and simulation of petroleum coke calcination in pot calciner using two-fluid model. Jom, 68, 643–655. DOI: 10.1007/s11837-015-1667-2.
  16. Kinekar, S., Mone, S., Taqi, A., Mane, P., Gawali, B. & Vitankar, V. (2021). NOX reduction in calciner using air staging and raw meal split technology. Mat. Today, 45, 3091–3096. DOI: 10.1016/j.matpr.2020.12.143.
  17. Zhu, J. & Kao, H. (2021). Numerical Simulation of Co-Combustion of Pulverized Coal and Different Proportions of Refused Derived Fuel in TTF Precalciner. JRM. 9(7), 1329. DOI: 10.32604/jrm.2021.015079.
  18. Xu, J. & Ma, Y. (2018). Simulation Analysis of Gas-solid Two-phase Flow for Heating Catalyst in Rotary Multi-cavity Kiln. ICMT., 398(1) 012010. DOI: 10.1088/1757-899X/398/1/012010.
  19. Liu, X. & Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
  20. Schlünder, E.U. (1988). On the mechanism of the constant drying rate period and its relevance to diffusion controlled catalytic gas phase reactions. Chem. Eng. Sci. 43(10), 2685–2688. DOI: 10.1016/0009-2509(88)80012-5.
  21. Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci. 61(19), 6348–6360. DOI: 10.1016/j.ces.2006.05.034.
Language: English
Page range: 31 - 41
Published on: Jul 12, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Tie-zhuang Zhou, Bin Yang, Cheng-qiang Wang, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.