References
- Stręk, F. (1981). Agitation and agitated vessels (in Polish), WNT, Warszawa.
- Kamieński, J. (2004). Agitation of multiphase systems (in Polish), WNT, Warszawa.
- Moucha, T., Linek, V. & Prokopova, E. (2003). Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci. 58, 1839–1846. DOI: 10.1016/S0009-2509(02)00682-6.
- Montante, G. & Paglianti, A. (2015). Gas hold-up distribution and mixing time in gas–liquid stirred tanks. Chem. Eng. J. 279, 648–658. DOI: 10.1016/j.cej.2015.05.058.
- Petricek, R., Moucha, T., Rejl, F.J., Valenz, L., Haidl J. & Cmelikova, T. (2018). Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transf. 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045.
- Xiao, Y., Li, X., Ren, S., Mao, Z. & Yang, C. (2020). Hydrodynamics of gas phase under typical industrial gassing rates in a gas-liquid stirred tank using intrusive image-based method. Chem. Eng. Sci. 227, 115923. DOI: j.ces.2020.115923.
- Rahimzadeh, A., Ein-Mozaffari, F. & Lohi, A. (2022). Investigation of power consumption, torque fluctuation and gas hold-up in coaxial mixers containing a shear-thinning fluid: Experimental and numerical approaches. Chem. Eng. Process.: Process Intensif. 177, 108983. DOI: 10.1016/j.cep.2022.188983.
- Rahimzadeh, A., Ein-Mozaffari, F. & Lohi, A. (2022). Scale-up study of aerated coaxial mixing reactors containing non-newtonian power-law fluids: Analysis of gas hold-up, cavity size, and power consumption. J. Ind. Eng. Chem. 113, 293–315. DOI: 10.1016/j.jiec.2022.06.004.
- Frankiewicz, S.S. & Woziwodzki, Sz. (2023). Gas hold-up in an unsteady stirred vessel by means of infinite series. Pol. J. Chem. Tech. 25(2), 30–35. DOI: 10.2478/pjct-2023-0014.
- Garcia-Ochoa, F. & Gomez E. (2004). Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem. Eng. Sci. 59, 2489–2501. DOI: 10.1016/j.ces.2004.02.009.
- Busciglio, A., Grisafi, F., Scargiali, F. & Brucata A. (2013). On the measurement of local gas hold-up, interfacial area and bubble size distribution in gas-liquid contactors via light sheet and image analysis: Imaging technique and experimental results. Chem. Eng. Sci. 102, 551–566. DOI: 10.1016/j.ces.2013.08.029.
- Busciglio, A., Opletal, M., Moucha, T., Montante, G. & Paglianti A. (2017). Measurement of gas hold-up distribution in stirred vessels equipped with pitched blade turbines by means of Electrical Resistance Tomography. Chem. Eng. Trans. 57, 1273–1278. DOI: 10.3303/CET1757213.
- Jamshidzadeh, M., Ein-Mozaffari, F. & Lohi, A. (2020). Local and overall gas holdup in an aerated coaxial mixing system containing a non-Newtonian fluid. AIChE J. 66, e17016. DOI: 10.1002/aic.17016.
- Cudak, M. & Rakoczy, R. (2022). Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales. Korean J. Chem. Eng. 39(11), 2959–2971. DOI: 10.1007/s11814-022-1281-2.
- Newell, R. & Grano, S. (2007). Hydrodynamics and scale up in Rushton turbine flotation cells: Part 1 – Cell hydrodynamics. Int. J. of Miner. Process. 81, 224–236. DOI: 10.1016/j.minpro.2006.06.007.
- Khalili, F., Nasr, M.R.J., Kazemzadeh, A. & Ein-Mozaffari, F. (2018). Analysis of gas holdup and bubble behavior in a biopolymer solution inside a bioreactor using tomography and dynamic gas disengagement techniques. J. Chem. Technol. Biotechnol. 93, 340–349. DOI: 10.1002/jctb.5356.
- Cudak, M. (2016). Experimental and numerical analysis of transfer processes in a biophase-gas-liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa.
- de Jesus, S.S., Moreira Neto, J. & Filho, R.M. (2017). Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochem. Eng. J. 118, 70–81. DOI: 10.1016/j.bej.2016.11.019.
- Garcia-Ochoa, F., Gomez, E. & Santos, V.E. (2020). Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochem. Eng. J. 164, 107803. DOI: 10.1016/j.bej.2020.107803.
- Cudak, M. (2014). Hydrodynamic characteristics of mechanically agitated air-aqueous sucrose solutions. Chem. Process Eng. 35(1), 97–107. DOI: 10.2478/cpe-2014-0007.
- Cudak, M. (2020). The effect of vessel scale on gas hold-up in gas-liquid systems. Chem. Process. Eng. 41(4), 241–256. DOI: 10.1515/cpe-2016-0005.
- Barros, P.A., Ein-Mozaffari, F. & Lohi A. (2022). Gas Dispersion in Non-Newtonian Fluid with Mechanically Agitated Systems: A review. Processes 10, 275–304 DOI: 10.3390/pr10020275.
- Major-Godlewska, M. & Radecki, D. (2018). Experimental analysis of gas hold-up for gas-liquid system agitated in a vessel equipped with two impellers and vertical tubular baffles. Pol. J. Chem. Tech. 20(1), 7–12. DOI: 10.2478/pjct-2018-0002.
- Major-Godlewska, M. & Cudak, M. (2022). Gas hold-up in vessel with dual impellers and different baffles. Energies 2022, 15, 8685. DOI: 10.3390/en15228685.
- Vlaev, S.D., Valeva, M.D. & Mann, R. (2002). Some effects of rheology on the spatial distribution of gas hold-up in a mechanically agitated vessel. Chem. Eng. J. 87, 21–30. PII: S1385-8947(01)00208-X.
- Yawalkar, A.A., Heesing, A.B.M., Versteeg, G.F. & Pangarkar, V.G. (2002). Gas hold-up in stirred tank reactors in the presence of inorganic electrolytes. Can. J. Chem. Eng. 80, 791–799. DOI: 10.1002/cjce.5450800502.
- Karcz, J., Siciarz, R. & Bielka, I. (2004). Gas hold-up in a reactor with dual system of impellers. Chem. Pap. 58(6), 404–409.
- Zhang, L., Pan, Q. & Rempel, G.L. (2006). Liquid phase mixing and gas hold-up in a multistage-agitated contactor with co-current up flow of air/viscous fluids. Chem. Eng. Sci. 61, 6189–6198. DOI: 10.1016/j.ces.2006.06.0.
- Khare, A.S. & Niranjan, K. (2004). The effect of vessel diameter on time dependent gas hold-up variations in highly viscous impeller agitated liquids. Chem. Eng. Process. 43, 571–573. DOI: 10.1016/S0255-2701(03)00044-8.
- Major-Godlewska, M. & Karcz, J. (2011). Process characteristics for a gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap. 65(2), 132–138. DOI: 10.2478/s11696-010-0080-0.
- Chinnasamy, G., Kaliannan, S., Eldho, A. & Nadarajan, D. (2016). Development and performance analysis of a novel agitated vessel. Korea. J. Chem. Eng. 33(4), 1181–1185. DOI: 10.1007/s11814-015-0264-y.
- Vasconcelos, J.M.T., Orvalho, S.C.P., Rodrigues, A.M.A.F. & Alves, S.S. (2000). Effect of blade shape on the performance of six-bladed disk turbine impellers. Ind. Eng. Chem. Res. 39, 203–213. DOI: 10.1021/ie9904145.
- Pinelli, D., Bakker, A., Myers, K.J., Reeder, M.F. & Magelli, F. (2003). Some features of a novel gas dispersion impeller in a dual-impeller configuration. Chem. Eng. Res. Des. 81, 448–454. DOI: 10.1205/026387603765173709.
- Zhang, L., Pan, Q. & Rempel, G.L. (2005). Liquid backmixing and phase hold-up in a gas-liquid multistage agitated contactor. Ind. Eng. Chem. Res. 44, 5304–5311. DOI: 10.1021/ie491701.
- Bao, Y., Yang, J.Y., Chen L. & Gao Z. (2012). Influence of the top impeller diameter on the gas dispersion in a sparged multi-impeller stirred tank. Ind. Eng. Chem. Res. 51, 12411–12420. DOI: 10.1021/ie301150b.
- Xie, M., Xia, J., Zhou, Z., Chu, J., Zhuang, Y. & Zhang, S. (2014). Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors. Ind. Eng. Chem. Res. 53, 5941–5953. DOI: 10.1021/ie400831s.
- Jamshed, A., Cooke, M., Ren, Z. & Rodgers, T.L. (2018). Gas–liquid mixing in dual agitated vessels in the heterogeneous regime. Chem. Eng. Res. Des. 133, 55–69. DOI: 10.1016/j.cherd.2018.02.034.
- Jegatheeswaran, S. & Ein-Mozaffari, F. (2020). Use of Gas Helicity as an Indicator to Evaluate Impeller Design and its Gas Holdup: Proof of Concept for the Intensification of Gas-Liquid Mixing, Chem. Eng. Process.: Process Intensif. 156, 108091. DOI: 10.1016/j.cep.2020.108091.
- Adamiak, R. & Karcz, J. (2007). Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems, Chem. Pap. 61, 16–23. DOI: 10.2478/s11696-006-0089-6.
- Karcz, J. (1998). Studies of gas hold-up for slender agitated vessel equipped with single or double system of disc turbines (in Polish), Inż. Chem. Proc. 19, 335–352.
- Adamiak, R. (2005). Research on the conditions of gas dispersion in liquids in agitated vessels of various scales, PhD Thesis. Szczecin University of Technology.
- Karcz, J, Siciarz, R. & Bielka, I. (2004). Gas hold-up in a rector with dual system of impellers, Chem. Pap. 58, 404–409.