Have a personal or library account? Click to login
Effect of calcination temperatures on optical and magnetic properties of FeWO4 nanoparticles Cover

Effect of calcination temperatures on optical and magnetic properties of FeWO4 nanoparticles

Open Access
|Apr 2024

References

  1. Sorouri, A.M., Sobhani-Nasab, A., Ganjali, M.R., Manani, S., Ehrlich, H., Joseph, Y. & Rahimi-Nasrabadi, M. (2023). Metal tungstates nanostructures for supercapacitors: A review. Appl. Mater. Today 32, 101819. DOI: 10.1016/j.apmt.2023.101819.
  2. Qian, J., Shen, L., Wang, Y., Li, L. & Zhang, Y. (2023). Photo-Fenton catalytic and photocatalytic performance of FeWO4 nanorods prepared at different pH. Mater. Lett. 334, 133705. DOI: 10.1016/j.matlet.2022.133705.
  3. Adak, M.K., Rajput, A., Mallick, L. & Chakraborty, B. (2022). Electrochemically robust ferberite (FeWO4) nanostructure as an anode material for alkaline water- and alcohol-oxidation reaction. ACS Appl. Energ. Mater. 5(5), 5652–5665. DOI: 10.1021/acsaem.1c03995.
  4. Tang, X., Chen, J., Zhang, M., Sun, J. & Yang, X. (2023). Tunable catalytic activity of FeWO4 nanomaterials for sensitive assays of pyrophosphate ion and alkaline phosphatase activity. Sci. China Chem. 66(6), 1860–1868. DOI: 10.1007/s11426-023-1583-8.
  5. Patil, A.R., Dongale, T.D., Namade, L.D., Mohite, S.V., Kim, Y., Sutar, S.S., Kamat, R.K. & Rajpure, K.Y. (2023). Sprayed FeWO4 thin film-based memristive device with negative differential resistance effect for non-volatile memory and synaptic learning applications. J. Colloid Interf. Sci. 642, 540–553. DOI: 10.1016/j.jcis.2023.03.189.
  6. Qian, H., Cao, L., Liao, S., Xie, S., Xiong, X. & Zou, J. (2023). Construction of noble-metal-free FeWO4/Mn0.5Cd0.5S photocatalyst to optimize H2 evolution perfor mance in water splitting. Int. J. Hydrog. Energy 48(23), 8514–8525. DOI: 10.1016/j.ijhydene.2022.11.284.
  7. Wang, H., Xu, L., Deng, D., Liu, X., Li, H. & Su, D. (2023). Regulated electronic structure and improved electro-catalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries. J. Energy Chem. 76, 359–367. DOI: 10.1016/j. jechem.2022.09.023.
  8. Goubard-Bretesché, N., Crosnier, O., Douard, C., Iadecola, A., Retoux, R., Payen, C., Doublet, M.-L., Kisu, K., Iwama, E., Naoi, K., Favier, F. & Brousse, T. (2020). Unveiling pseudocapacitive charge storage behavior in FeWO4 electrode material by operando X-ray absorption spectroscopy. Small 16(33), 2002855. DOI: 10.1002/smll.202002855.
  9. Boudghene Stambouli, H., Guenfoud, F., Benomara, A., Mokhtari, M. & Sönmez-Çelebi, M. (2021). Synthesis of FeWO4 heterogeneous composite by the sol–gel process: enhanced photocatalytic activity on malachite green. React. Kinet. Mech. Catal. 133(1), 563–578. DOI: 10.1007/s11144-021-01994-x.
  10. Yang, G. & Park, S.-J. (2019). Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials 12(7), 1177. DOI: 10.3390/ma12071177.
  11. Patil, S.S., Chougale, U.M., Kambale, R.K. & Fulari, V.J. (2023). Hydrothermal synthesis of CoWO4 nanoparticles and evaluation of their supercapacitive performance. J. Energy Storage 67, 107517. DOI: 10.1016/j.est.2023.107517.
  12. Yu, F., Cao, L., Huang, J. & Wu, J. (2013). Effects of pH on the microstructures and optical property of FeWO4 nanocrystallites prepared via hydrothermal method. Ceram. Int. 39(4), 4133–4138. DOI: 10.1016/j.ceramint.2012.10.269.
  13. Sun, D., Iqbal, N., Liao, W., Lu, Y., He, X., Wang, K., Ma, B., Zhu, Y., Sun, K., Sun, Z. & Li, T. (2022). Efficient degradation of MB dye by 1D FeWO4 nanomaterials through the synergistic effect of piezo-Fenton catalysis. Ceram. Int. 48(17), 25465–25473. DOI: 10.1016/j.ceramint.2022.05.225.
  14. Sun, B., Liu, Y. & Chen, P. (2014). Room-temperature multiferroic properties of single-crystalline FeWO4 nanowires. Scr. Mater. 89, 17–20. DOI: 10.1016/j.scriptamat.2014.06.030.
  15. Zhang, J., Wang, Y., Li, S., Wang, X., Huang, F., Xie, A. & Shen, Y. (2011). Controlled synthesis, growth mechanism and optical properties of FeWO4 hierarchical microstructures. Cryst. Eng. Comm. 13(19), 5744–5750. DOI: 10.1039/C1CE05416C.
  16. Kądziołka, D., Grzechulska-Damszel, J. & Schmidt, B. (2022). Simultaneous photooxidation and photoreduction of phenol and Cr(VI) ions using titania modified with nanosilica. Pol. J. Chem. Technol. 24(4), 23–29. DOI: 10.2478/pjct-2022-0025.
  17. Sangeetha, A., Jaya Seeli, S., Bhuvana, K.P., Kader, M.A. & Nayak, S.K. (2019). Correlation between calcination temperature and optical parameter of zinc oxide (ZnO) nanoparticles. J. Sol-Gel Sci. Technol. 91(2), 261–272. DOI: 10.1007/s10971-019-05000-8.
  18. Chan, Y.B., Selvanathan, V., Tey, L.-H., Akhtaruzzaman, M., Anur, F.H., Djearamane, S., Watanabe, A. & Aminuzzaman, M. (2022). Effect of calcination temperature on structural, morphological and optical properties of copper oxide nano-structures derived from Garcinia mangostana L. leaf extract. Nanomaterials 12(20), 3589. DOI: 10.3390/nano12203589.
  19. Hoghoghifard, S. & Moradi, M. (2022). Influence of annealing temperature on structural, magnetic, and dielectric properties of NiFe2O4 nanorods synthesized by simple hydrothermal method. Ceram. Int. 48(12), 17768–17775. DOI: 10.1016/j.ceramint.2022.03.047.
  20. Mahmoudi Chenari, H. & Zarodi, M. (2022). Electrospinning process of CuxCo3-xO4 fibers (CCOFs): structural, surface morphology, optical and magnetic study. J. Magn. Magn. Mater. 562, 169853. DOI: 10.1016/j.jmmm.2022.169853.
  21. Victory, M., Pant, R.P. & Phanjoubam, S. (2020). Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. Mater. Chem. Phys. 240, 122210. DOI: 10.1016/j. matchemphys.2019.122210.
  22. Shen, H., Xue, W., Fu, F., Sun, J., Zhen, Y., Wang, D., Shao, B. & Tang, J. (2018). Efficient degradation of phenol and 4-nitrophenol by surface oxygen vacancies and plasmonic silver co-modified Bi2MoO6 photocatalysts. Chem.-Eur. J. 24(69), 18463–18478. DOI: 10.1002/chem.201804267.
  23. Liu, D., Lv, Y., Zhang, M., Liu, Y., Zhu, Y., Zong, R. & Zhu, Y. (2014). Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. J. Mater. Chem. A 2(37), 15377–15388. DOI: 10.1039/C4TA02678K.
  24. Nandi, P. & Das, D. (2019). Photocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. J. Appl. Surf. Sci. 465, 546–556. DOI: 10.1016/j.apsusc.2018.09.193.
  25. Teh, G.B., Wong, Y.C. & Tilley, R.D. (2011). Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. J. Magn. Magn. Mater. 323(17), 2318–2322. DOI: 10.1016/j.jmmm.2011.04.014.
  26. Rashidizadeh, A., Esmaili Zand, H.R., Ghafuri, H. & Rezazadeh, Z. (2020). Graphitic carbon nitride nanosheet/FeWO4 nanoparticle composite for tandem photooxidation/knoevenagel condensation. ACS Appl. Nano Mater. 3(7), 7057–7065. DOI: 10.1021/acsanm.0c01380.
  27. Jamali, M. & Shariatmadar Tehrani, F. (2020). Effect of synthesis route on the structural and morphological properties of WO3 nanostructures. Mater. Sci. Semicond. Process 107, 104829. DOI: 10.1016/j.mssp.2019.104829.
  28. Leal, G.F., Barrett, D.H., Carrer, H., Figueroa, S.J.A., Teixeira-Neto, E., Curvelo, A.A.S. & Rodella, C.B. (2019). Morphological, structural, and chemical properties of thermally stable Ni-Nb2O5 for catalytic applications. J. Phys. Chem. C 123(5), 3130–3143. DOI: 10.1021/acs.jpcc.8b09177.
  29. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9-10), 1051–1069. DOI: 10.1515/pac-2014-1117.
  30. Tran, N.M., Doan, T.C. & Yoo, H. (2022). Fabrication of hollow fibrous nanosilica with large pore channels. Chem. Commun. 58(89), 12431–12434. DOI: 10.1039/D2CC04680F.
  31. Prates da Costa, E., Hofmann, A., Göbel, U., Cop, P. & Smarsly, B.M. (2022). Development of pore morphology during nitrate group removal by calcination of mesoporous CexZr1-x-y-zYyLazO2−δ Powders. Langmuir 38(27), 8342–8352. DOI: 10.1021/acs.langmuir.2c00875.
  32. Egger, S.M., Hurley, K.R., Datt, A., Swindlehurst, G. & Haynes, C.L. (2015). Ultraporous mesostructured silica nanoparticles. Chem. Mat. 27(9), 3193–3196. DOI: 10.1021/cm504448u.
  33. Tran, N.M., Nam, Y. & Yoo, H. (2022). Fabrication of dendritic fibrous silica nanolayer on optimized water-glass-based synthetic nanosilica from rice husk ash. Ceram. Int. 48(21), 32409–32417. DOI: 10.1016/j.ceramint.2022.07.184.
  34. Sagar, T.V., Rao, T.S. & Naidu, K.C.B. (2020). Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8). Ceram. Int. 46(8, Part B), 11515–11529. DOI: 10.1016/j. ceramint.2020.01.178.
  35. Luo, D., Yuan, J., Zhou, J., Zou, M., Xi, R., Qin, Y., Shen, Q., Hu, S., Xu, J., Nie, M., Xu, D. & Wu, B. (2021). Synthesis of samarium doped ferrite and its enhanced photo-catalytic degradation of perfluorooctanoic acid (PFOA). Opt. Mater. 122, 111636. DOI: 10.1016/j.optmat.2021.111636.
  36. Sadeghzadeh-Attar, A. (2018). Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Sol. Energy Mater. Sol. Cells 183, 16–24. DOI: 10.1016/j.solmat.2018.03.046.
Language: English
Page range: 16 - 23
Published on: Apr 3, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Anh Q.K. Nguyen, Thi K.N. Tran, Bich N. Hoang, Ngo T.C. Quyen, Tai T. Huynh, Nguyen P. Yen, Bich N. Nguyen, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.