References
- Edström, J.O. (1953). The mechanism of reduction of iron oxides. J. Iron and Steel Inst. 175, 289–304.
- Moon, J.T. & Walker, K.D. (1975). Swelling of iron oxide compacts during reduction. Ironmaking and Steelmaking. 1, 30–35.
- Spreitzer, D. & Schenk, J. (2019). Reduction of Iron Oxides with Hydrogen—A Review. Res. Internat. 20(10), 1900108. DOI: 10.1002/srin.201900108.
- Srinivisan, N.S. & Lahiri, A.K. (1977). Studies on the reduction of hematite by carbon. Metal. Trans. B. 8, 175. DOI: 10.1007/BF02656367.
- Bryk, C. & Lv, W.K. (1986). Continuous Reduction of iron ore with coal in an electrically heated furnace. The Canadian J. Metall. Mat. Sci. 25(3), 241–246. DOI: 10.1179/cmq.1986.25.3.241.
- Haque, R., Ray, H.S. & Mukherjee, A. (1993). Reduction of iron ore fines by coal fines in a packed bed and fluidized bed apparatus — A comparative study. Metall. Mater. Trans. B. 24, 1993, 511–520. DOI: 10.1007/BF02666434.
- Morrison, A.L., Wright, J.K. & Bouling, K. McG. (1978). Microstructure of metallized iron ore pellets reduced by coal char in a rotary kiln simulator. Ironmaking and Steelmaking. 5(1), 39–44.
- El-Geassy, A.A. & Nasr, M.I. (1990). Effect of sintering on the structure of hematite and its behaviour during reduction. Can. Metall. Quarterly 29(3), 185–191. DOI: 10.1179/cmq.1990.29.3.185.
- Davis, C.G., McFarlin, J.F. & Pratt, H.R. Direct-reduction technology and economics. (1982). Ironmaking and Steelmaking 9(3), 93–129.
- Unal, A. & Bradshow, A.V. (1983). Rate processes and structural changes in gaseous reduction of hematite particles to magnetite. Metall. Trans. 14, 743–752.
- Abdel Halim, K.S., Nasr, M.I. & El-Geassy, A.A. (2011). Developed model for reduction mechanism of iron ore pellets under load. Ironmaking and Steelmaking. 38, 189–196. DOI: 10.1179/030192310X12816231892305.
- El-Geassy, A.A., Nasr, M.I., El-Raghy, S.M. & Hammam, A.E. (2020). Comparative studies on isothermal and non-isothermal reduction of hematite in carbon monoxide atmosphere. Ironmaking and Steelmaking. 47, 948–957. DOI: 10.1080/03019233.2019.1646564.
- Bahgat, M., Abdel Halim, K.S., El-Kelesh, H.A. & Nasr, M.I. (2011). Behaviour of wüstite prepared from Baharia iron ore sinter during reduction with CO–CO2–N2 gas mixture. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C). 120(2), 102. DOI:10.1179/1743285510Y.0000000010.
- El-Geassy A.A.& Rajaumar, V. (1985) Influence of particle size on the gaseous reduction of wüstite at 900–1100 oC. Trans. ISIJ, 25, 1022.
- Shehata, K.A. & Ezz, S.Y. (1973). Study of the last stages or reduction of iron oxides. Trans. IMM, 82 C, 638.
- El-Geassy, A.A., Nasr, M.I. & Omar, A.A. (1990). The fourteen congress IMM, 2-6 July (pp 29). London, UK.
- El-Geassy, A.A. (1986). Gaseous reduction of Fe2O3 compacts at 600–1050 oC. J. Mat. Sci. 21, 3889–3900. DOI: 10.1007/BF02431626.
- Nasr, M.I. (1985). Structural analysis in gas solid reaction. Ph. D. Thesis, Cairo University, Egypt.
- Hessien, M., Kashiwaya, Y., Ishii, K., Nasr, M.I. & El-Geassy, A.A. (2008). Characterization of iron ore sinter and its behaviour during non-isothermal reduction conditions. Ironmaking & Steelmaking 35(3), 183–190. DOI: 10.1179/174328107X174663
- El-Geassy, A.A., Shehata, K.A. & Ezz, S.Y. (1977). Mechanism of iron oxide reduction with hydrogen/carbon monoxide mixtures. Transact. Iron Steel Institute Japan 17(11), 629–635. DOI: 10.2355/isijinternational1966.17.629.
- Turkdogan, E.T. & Vinters, J.V. (1974). Catalytic effect of iron on decomposition of carbon monoxide: I. carbon deposition in H2-CO Mixtures. Metal. Trans B. 5, 11–19. DOI: 10.1007/BF02642919.
- Okura, A. & Metsuahita, Y. (1965). On the properties of reduced sponge-iron powders. Testu-To-Hagane, 51, 11. DOI: 10.2355/tetsutohagane1955.51.1_11.
- Towhidi, N. & Szekely, J. (1980). An experimental study of hematite reduction with CO+H2 mixtures over the temperature range 600–1300 oC. J. Metals 32(12), 420.
- Wang, H. & Sohn, H.Y. (2012). Effects of Reducing Gas on Swelling and Iron Whisker Formation during the Reduction of Iron Oxide Compact. Steel Research Int. 83(9999), 1-7. DOI: 10.1002/srin.201200054.
- Cavaliere, P., Perrone, A. & Marsano, D. (2023). Effect of reducing atmosphere on the direct reduction of iron oxides pellets. Powder Technol. 426 (118650). DOI: 10.1016/j. powtec.2023.118650.
- Mckewan, W.K. (1962). Trans. TMS-AIME. 224, 2, 387–393.
- Sato, K.. Ueda, Y., Nishikawa, Y. & Goto, T. (1986). Effect of Pressure on Reduction Rate of Iron Ore with High Pressure Fluidized Bed. Transact. Iron Steel Institute Japan 26(8), 697. DOI: 10.2355/isijinternational1966.26.697.
- Turkdogan, E.T. & Vinters, J.V. (1971). Gaseous reduction of iron oxides. 1. Reduction of hematite in hydrogen. Metall. Trans 2(11), 3175–3188.
- Turkdogan, E.T. & Vinters, J.V. (1972). Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxides and iron. Metall. Trans 3, 1561–1574. DOI: 10.1007/BF02643047.
- El-Geassy, A.A. & Nasr, M.I. (1990). Influence of the original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts. ISIJ Int., 30(6), 417–425. DOI: 10.2355/isijinternational.30.417.
- Abdel Halim, K.S., Bahgat, M., El-Kelesh, H.A. & Nasr, M.I. (2009). Metallic Iron Whisker Formation and Growth during Iron Oxide Reduction: Basicity Effect. Ironmaking & Steelmaking. 36(8), 631. DOI: 10.1179/174328109X463020.
- Bahgat, M., Abdel Halim, K.S., Nasr, M.I. & El-Geassy, A.A. (2008). Morphological Changes Accompanying the Gaseous Re-duction of SiO2- Doped Wüstite Compacts. Ironmaking & Steelmaking 35(3), 205–212. DOI: 10.1179/174328107X155259.
- Abdel Halim, K.S. (2007). Isothermal reduction behavior of Fe2O3/MnO composite materials with solid carbon. Mat. Sci. Eng. A, 452–453, 15–22. DOI: 10.1016/j.msea.2006.12.126.
- Bahgat, M., Abdel Halim, K.S., Nasr M.I. & El-Geassy A.A. (2007). Reduction Behavior of Wüstite Doped with MgO. Steel Res. Int. 78(6), 443–450. DOI: 10.1002/srin.200706228.
- Bahgat, M., Abdel Halim, K.S., El-Kelesh H.A.& Nasr, M.I. (2011). Behaviour of wustite prepared from Baharia iron ore sinter during reduction with CO–CO2–N2 gas mixture. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C). 120(2), 102. DOI: 10.1179/1743285510Y.0000000010.
- El-Geassy, A.A. (1996). Gaseous reduction of pure Fe2O3 and MgO-doped Fe2O3 compacts with carbon monoxide at 1173–1473 K. ISIJ Int. 36, 1328–1337.
- El-Geassy, A.A. (1997). Stepwise reduction of CaO and/or MgO doped-Fe2O3 compacts to magnetite then subsequently to iron at 1173–1473 K. ISIJ Int., 37, 844–853. DOI: 10.2355/isijinternational.37.844.
- El-Geassy, A.A., Nasr, M.I., Omar, A.A. & Mousa, E.A. (2007). Reduction kinetics and catastrophic swelling of MnO2-doped Fe2O- compacts with CO at 1073–1373K. ISIJ Int. 47(3), 377–385. DOI: 10.2355/isijinternational.47.377.
- El-Geassy, A.A. (1999). Influence of Doping with CaO and/or MgO on Stepwise Reduction of Pure Hematite Compacts. Ironmaking Steelmaking 26(1), 41–52. DOI: 10.1179/irs.1999.26.1.41.
- El-Geassy, A.A. (1996). Reduction of CaO and/or MgO-doped Fe2O3 compacts with carbon monoxide at 1173–1473 K. J. Iron Steel Inst. Japan Internat. 36(11), 1344–1353. DOI: 10.2355/isijinternational.36.1344.
- Abdel Halim, K.S., El-Geassy, A.A., Ramadan, M., Nasr, M.I., Hussein, A., Fathy, N. & Alghamdi, A.S. (2022). Reduction Behavior and Characteristics of Metal Oxides in the Nanoscale. Metals, 12(12), 182. DOI: 10.3390/met12122182.
- Szekely, J., Evans, J. & Sohn, H.Y. (1976). Gas Solid Reactions. Academic Press. New York, USA. Retrieved by AlChE (1977). 23(4). DOI: 10.1002/aic.690230435.
- Morrison, A.L., Wright, J.K. & Bouling, K.McG. (1978). Direct reduction of iron ore pellets in a rotary kiln simulator. Ironmaking & Steelmaking 5(1), 32–38.
- McKewan, W.K. (1965). Steel Making, the Chipman Conference.141. MIT Press, Cambridge. Ed. J.F. Elliott.
- Lien, H.O., El-Mehairy A.E. & Ross, H.U. (1971). A two-zone theory of iron oxide reduction. J. Iron-Steel Inst. 209, 451–545.
- Babich, A. & Senk, D. (2015). Recent developments in blast furnace iron-making technology, Elsevier, Mineralogy, Processing and Environmental Sustainability, Pages 505–547, DOI: 10.1016/B978-1-78242-156-6.00017-4.
- Abdel Halim, K.S. (2013). Theoretical approach to change blast furnace regime with natural gas injection. ISIJ Int., 20(9), 40–46. DOI: 10.1016/S1006-706X(13)60154-5.
- Wang, Y., Zuo, H.& Zhao, J. (2019). Recent progress and development of ironmaking in China as of 2019: an overview. Ironmaking & Steelmaking 2020, 47(5), 1–10. DOI: 10.1080/03019233.2020.1794471.
- Chen, Y. & Zuo, H. (2021). Review of hydrogen-rich ironmaking technology in blast furnace. Ironmaking & Steelmaking. 48(6), 749–768. DOI: 10.1080/03019233.2021.1909992.
- Aziz, I.H., Abdullah, M.M., Salleh, M.A., Ming, L.Y. et.al. (2022). Recent developments in steelmaking industry and potential alkali activated based steel waste: A Comprehensive review. Materials. 15, 1948. DOI: 10.3390/ma15051948.
- Pavalov, M.A. (1949). Metallurgy of Pig Iron, Part II, Metallurgizdate, 628.
- Abdel Halim, K.S., Andronov, V.N. & Nasr, M.I. (2009). Blast furnace operation with natural gas injection and minimum theoretical flame temperature. Ironmaking and Steelmaking. 36(1), 12–16. DOI: 10.1179/174328107X155240.
- Abdel Halim, K.S. (2007). Effective utilization of using natural gas injection in the production of pig iron. Mat. Letters, 61, 3281–3286. DOI: 10.1016/j.matlet.2006.11.053.
- Andronov, V.N. & Abdel Halim, K.S. (2001). Improvement of technology of blast furnace melting with combined blowing, J. Ferrous Metals (Cherny Metall), 8, 25–30.
- Kuang, S., Li, Z. & Yu. A. (2018). Review on modeling and simulation of blast furnace. Steel Res. Internat. 89(1). DOI: 10.1002/srin.201700071.
- Direct from Midrex, Third quarter. (2012).
- Dutta, S.K. & Sah, R. (2016). Direct Reduced Iron: Production. Encyclopedia of Iron, Steel, and Their Alloys. CRC Press. DOI: 10.1081/E-EISA-120050996.
- 2020 World direct Reduction Statistics by Midrex. (2021). World Steel Dynamics, WSD. New Jersy, U.S.A.
- Schenk, J.L. (2006). FINEX®:From fine iron ore to hot metal. Proceedings of the innovations in ironmaking session of 2006. International symposium. Linz, Austria.
- Sohn, H.Y. & Szekely, J. (1972). A structural model for gas-solid reactions with a moving boundary—III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. J. Chem. Eng. Sci. 27(4), 763–778.
- Andronov, V.N. (2001). Modern Blast Furnace. Library of Saint Petersburg State Technical University, Russia.
- Lu, W.L. (1999). Kinetics and mechanisms of direct reduced iron ore. In J. Feinman, & D. R. Mac Rae (Eds.), Direct reduced iron – Technology and economics of production and use. 43–57. Warrendale: The Iron & Steel Society.
- Gudenau, H.W., Fang, J., Hirata, T. & Gebel, U. (1989). Steel Res. 60(314), 38.
- Gransden, I.F. & Sheasby, J.S. (1974). The sticking of iron ore during reduction by hydrogen in a fluidized bed. Canadian Metallurgical Quarterly. 13(4), 649–657.
- Schmole, P. & Lungen, H.B. (2012). From Ore to Steel-Ironmaking processes. Stahl und Eisen. 132(6), 29–38.
- Lungen, H.B., Mulheims, K. & Steffen, R. (2001). State of the art of direct reduction and smelting reduction of iron ores. Stahl Eisen 121(5), 35–47.
- Kepplinger, W.L. (2009). Actual state of smelting-reduction processes in ironmaking. Stahl und Eisen.7, 43–45.
- Bohm, C., Heckmann, H. & Grill, W. (2011). SVAI Smelting/Direct Reduction Technology, Proc. Metec In Steel Conf. Dusseldorf, 27 june-1 July 2011. Dusseldorf, Germany.
- Schenk, J.L., Wallner, F., Kepplinger, W.L., Shin, M.K., Cho, M. & Lee, I.O. (2000). Technology for an increased portion of fine ore in the COREX process. Scandinavian J. Metall. 29(2), 81–91.
- Anameric, B. & Kawatra, S.K. (2009). Direct iron smelting reduction processes. Mineral Processing & Extractive Metall. Rev. 30, 1–51. DOI: 10.1080/08827500802043490.
- Boom, R. &Steffen, R. (2001). Recycling of scrap for high quality steel products. STEEL RES, 72(3), 91–96.
- Fruehan, R.J., Astier, J.E. & Steffen, R. (2000). Status of direct reduction and smelting in the year of 2000. Proc. 4th European Coke and Ironmaking Congr. (ECIC 2000). 19-22 June, Paris, France.
- Shim, Y. & Jung, S. (2018). Conditions for Minimizing Direct Reduction in Smelting Reduction Iron Making. ISIJ. 58(2). 274–281.
- Chatterjee, A. (2005). A critical appraisal of the present status of smelting reduction-Part I From blast furnace to Corex. Steel Times Internat. 29(4), 23.
- Burke, P.D., & Gul, S. (2002, December). HIsmelt—the alternative ironmaking technology. In Proceedings of International Conference on Smelting Reduction for Ironmaking, Jouhari, AK, Galgali, RK, Misra, VN, Eds (pp. 61–71).
- Bhaskar, A., Assadi, M. & Nikpey Somehsaraei, H. (2020). Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen. Energies. 13, 758. DOI: 10.3390/en13030758.
- Ostadi, M., Paso, K.G., Rodriguez-Fabia, S., Qi, LE., Manenti, F., Hillestad, M. (2020). Process Integration of Green Hydrogen: Decarbon. Chem. Ind. Energies., 13(18), 4859. DOI: 10.3390/en13184859.
- Wang, R.R., Zhao, Y.Q., Babich, A., Senk, D. & Fan, X.Y., (2021). Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Cleaner Prod. 329, 129797. DOI: 10.1016/j.jclepro.2021.129797.
- Ma, Y., Isnaldi, R. Souza, Filho, I.R.S., Bai, et.al. (2022). Hierarchical nature of hydrogen-based direct reduction of iron oxides. Scripta Materialia, 213, 114571. DOI: 10.1016/j. scriptamat.2022.114571.
- Abdel Halim, K.S., Ramadan, M., Shawabkeh, A., Abufara, A. (2013). Synthesis and characterization of metallic materials for membrane technology. Beni-Suef University J. Basic Appl. Sci., 2, 72–79.
- Abdel Halim, K.S. (2012). Novel synthesis of porous Fe–Ni ferroalloy powder for energy applications. Mater. Letter, 68, 478. DOI: 10.1016/j.matlet.2011.11.048.
- Abdel Halim, K.S., Khedr, M.H., Nasr, M.I. & Abdel Wahab, M. Sh., (2008). Carbothermic reduction kinetics of nanocrystallite Fe2O3/NiO composites for the production of Fe/Ni alloy. J. Alloys Compounds. 463, 585–590. DOI: 10.1016/j. jallcom.2008.02.026.
- El-Geassy, A.A., Abdel Halim, K.S. & Alghamdi A.S. (2023). A Novel Hydro-Thermal Synthesis of Nano-Structured Molybdenum-Iron Intermetallic Alloys at Relatively Low Temperatures. Materials. 16(7), 2736. DOI: 10.3390/ma16072736.
- Abdel Halim, K.S., Bram, M., Buchkremer, H.P. & Bahgat, M. (2012). Synthesis of heavy tungsten alloy by thermal technique. Ind. & Engin. Chem. Res. 51(50), 16354–16360. DOI: 10.1021/ie301947e.
- Al-Kelesh, H., Abdel Halim, K.S., Nasr, M.I. (2016). Synthesis of heavy tungsten alloys via powder reduction technique. J. Mat. Res. 31(9), 2977–2986. DOI: 10.1557/jmr.2016.318.
- Ahmed, H.M., El-Geassy A.A. & Seetheraman S. (2011). Kinetic studies of hydrogen reduction of NiO-WO3 precursors in fluidized bed reactor, ISIJ Int. 51(9), 1359–1367. DOI: 10.2355/isijinternational.51.1383.
- Abdel Halim, K.S., Ramadan, M., Shawabkeh, A. & Fathy, N. (2017). Developing nanomaterials for ironmaking processes: Theory and practice. Appl. Mech. Mat., 865, 3–8. DOI: 10.4028/www.scientific.net/AMM.865.3.
- Abdel Halim, K.S., Khedr, M.H., Soliman, N.K. (2010). Reduction characteristics of iron oxide in nanoscale. Mat. Sci. Technol. 26(4), 445–452. DOI: 10.1179/026708309X1246 8927349253.
- Khedr, M.H., Abdel Halim, K.S. & Soliman, N.K. (2009). Synthesis and photocatalytic activity of nano-sized iron oxides. Mat. Letters. 63, 598–601. DOI: 10.1016/j.matlet.2008.11.050.
- Khedr, M.H., Abdel Halim, K.S. & Soliman, N.K. (2008). Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes. Appl. Surf. Sci. 255, 2375–2381. DOI: 10.1016/j. apsusc.2008.07.096.
- El-Sheikh, S.M., Harraz, F.A., Abdel-Halim, K.S. (2009). Catalytic performance of nanostructured iron oxides synthesized by thermal decomposition. J. Alloys Comp. 487, 716–723. DOI: 10.1016/j.jallcom.2009.08.053.
- Lyadov, A.S., Kochubeev, A.A., Markova, E.B., Parenago, O.P., Khadzhiev (2016). Features of Reduction and Chemisorption Properties of Nanosized Iron (III) Oxide. Petrol. Chem. 56(12), 1134–1139.
- Abdel Halim, K.S., Khedr, M.H., Nasr, M.I., El-Mansy, A. (2007). Factors affecting catalytic oxidation of CO over nano-sized Fe2O3, Mat. Res. Bull. 42, 731–741. DOI: 10.1016/j. materresbull.2006.07.009.