Have a personal or library account? Click to login
Study on safe disposal of cephalosporins based on kinetic pyrolysis mechanism Cover

Study on safe disposal of cephalosporins based on kinetic pyrolysis mechanism

Open Access
|Jan 2024

Abstract

Based on the global goals for cleaner production and sustainable development, the pyrolysis behavior of cephalosporin residues was studied by TG-MS method. The influence of full temperature window on the safe disposal of residues was analyzed based on the “3-2-2” and “1+1” of thermal analysis kinetics, and the gas by-products of thermal degradation were monitored. Results showed that the pyrolysis of distillation residues were divided into low and high-temperature zones, including six stages. Maximum error rate (8.55%) by multiple scan rate was presented based on “3-2-2” pattern and maximum total fluctuation (33.7) by single scan rate was presented based on “1+1” pattern, which implied that the comprehensive multi-level comparison method was very reliable. The E value “E” of six stages showed an increasing trend ranging 166.8 to 872.8 kJ/mol. LgA(mean) was 27.28. Most mechanism function of stage 1, 2 were Z-L-T equation (3D), stage 3, 4, 6 were Avrami-Erofeev equation (AE3, AE4, AE2/3) and stage 5 was Reaction Order (O2). In addition, various small molecular micromolecule substances were detected such as C2H4O, C2H6, NH3, CH4, CO2 under full temperature windows and a possible pyrolysis path of residues was provided.

Language: English
Page range: 52 - 60
Published on: Jan 11, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Jiangxue Fan, Meng Zhang, Xiaofei Hou, Fang Wang, Mengyuan Bai, Ruoxi Jiao, Zhongyu Yang, Erhong Duan, Fengfei Cheng, Wen Zhou, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.